Sparse representation models a signal as a linear combination of a small
number of dictionary atoms. As a generative model, it requires the dictionary
to be highly redundant in order to ensure both a stable high sparsity level and
a low reconstruction error for the signal. However, in practice, this
requirement is usually impaired by the lack of labelled training samples.
Fortunately, previous research has shown that the requirement for a redundant
dictionary can be less rigorous if simultaneous sparse approximation is
employed, which can be carried out by enforcing various structured sparsity
constraints on the sparse codes of the neighboring pixels. In addition,
numerous works have shown that applying a variety of dictionary learning
methods for the sparse representation model can also improve the classification
performance. In this paper, we highlight the task-driven dictionary learning
algorithm, which is a general framework for the supervised dictionary learning
method. We propose to enforce structured sparsity priors on the task-driven
dictionary learning method in order to improve the performance of the
hyperspectral classification. Our approach is able to benefit from both the
advantages of the simultaneous sparse representation and those of the
supervised dictionary learning. We enforce two different structured sparsity
priors, the joint and Laplacian sparsity, on the task-driven dictionary
learning method and provide the details of the corresponding optimization
algorithms. Experiments on numerous popular hyperspectral images demonstrate
that the classification performance of our approach is superior to sparse
representation classifier with structured priors or the task-driven dictionary
learning method