350 research outputs found

    Discriminative Representations for Heterogeneous Images and Multimodal Data

    Get PDF
    Histology images of tumor tissue are an important diagnostic and prognostic tool for pathologists. Recently developed molecular methods group tumors into subtypes to further guide treatment decisions, but they are not routinely performed on all patients. A lower cost and repeatable method to predict tumor subtypes from histology could bring benefits to more cancer patients. Further, combining imaging and genomic data types provides a more complete view of the tumor and may improve prognostication and treatment decisions. While molecular and genomic methods capture the state of a small sample of tumor, histological image analysis provides a spatial view and can identify multiple subtypes in a single tumor. This intra-tumor heterogeneity has yet to be fully understood and its quantification may lead to future insights into tumor progression. In this work, I develop methods to learn appropriate features directly from images using dictionary learning or deep learning. I use multiple instance learning to account for intra-tumor variations in subtype during training, improving subtype predictions and providing insights into tumor heterogeneity. I also integrate image and genomic features to learn a projection to a shared space that is also discriminative. This method can be used for cross-modal classification or to improve predictions from images by also learning from genomic data during training, even if only image data is available at test time.Doctor of Philosoph

    Subspace Representations and Learning for Visual Recognition

    Get PDF
    Pervasive and affordable sensor and storage technology enables the acquisition of an ever-rising amount of visual data. The ability to extract semantic information by interpreting, indexing and searching visual data is impacting domains such as surveillance, robotics, intelligence, human- computer interaction, navigation, healthcare, and several others. This further stimulates the investigation of automated extraction techniques that are more efficient, and robust against the many sources of noise affecting the already complex visual data, which is carrying the semantic information of interest. We address the problem by designing novel visual data representations, based on learning data subspace decompositions that are invariant against noise, while being informative for the task at hand. We use this guiding principle to tackle several visual recognition problems, including detection and recognition of human interactions from surveillance video, face recognition in unconstrained environments, and domain generalization for object recognition.;By interpreting visual data with a simple additive noise model, we consider the subspaces spanned by the model portion (model subspace) and the noise portion (variation subspace). We observe that decomposing the variation subspace against the model subspace gives rise to the so-called parity subspace. Decomposing the model subspace against the variation subspace instead gives rise to what we name invariant subspace. We extend the use of kernel techniques for the parity subspace. This enables modeling the highly non-linear temporal trajectories describing human behavior, and performing detection and recognition of human interactions. In addition, we introduce supervised low-rank matrix decomposition techniques for learning the invariant subspace for two other tasks. We learn invariant representations for face recognition from grossly corrupted images, and we learn object recognition classifiers that are invariant to the so-called domain bias.;Extensive experiments using the benchmark datasets publicly available for each of the three tasks, show that learning representations based on subspace decompositions invariant to the sources of noise lead to results comparable or better than the state-of-the-art
    • …
    corecore