1,186 research outputs found

    Discriminative Sentence Modeling for Story Ending Prediction

    Full text link
    Story Ending Prediction is a task that needs to select an appropriate ending for the given story, which requires the machine to understand the story and sometimes needs commonsense knowledge. To tackle this task, we propose a new neural network called Diff-Net for better modeling the differences of each ending in this task. The proposed model could discriminate two endings in three semantic levels: contextual representation, story-aware representation, and discriminative representation. Experimental results on the Story Cloze Test dataset show that the proposed model siginificantly outperforms various systems by a large margin, and detailed ablation studies are given for better understanding our model. We also carefully examine the traditional and BERT-based models on both SCT v1.0 and v1.5 with interesting findings that may potentially help future studies.Comment: 8 pages, accepted as a conference paper at AAAI 202

    Incorporating Structured Commonsense Knowledge in Story Completion

    Full text link
    The ability to select an appropriate story ending is the first step towards perfect narrative comprehension. Story ending prediction requires not only the explicit clues within the context, but also the implicit knowledge (such as commonsense) to construct a reasonable and consistent story. However, most previous approaches do not explicitly use background commonsense knowledge. We present a neural story ending selection model that integrates three types of information: narrative sequence, sentiment evolution and commonsense knowledge. Experiments show that our model outperforms state-of-the-art approaches on a public dataset, ROCStory Cloze Task , and the performance gain from adding the additional commonsense knowledge is significant

    Domain Adaptation for Statistical Classifiers

    Full text link
    The most basic assumption used in statistical learning theory is that training data and test data are drawn from the same underlying distribution. Unfortunately, in many applications, the "in-domain" test data is drawn from a distribution that is related, but not identical, to the "out-of-domain" distribution of the training data. We consider the common case in which labeled out-of-domain data is plentiful, but labeled in-domain data is scarce. We introduce a statistical formulation of this problem in terms of a simple mixture model and present an instantiation of this framework to maximum entropy classifiers and their linear chain counterparts. We present efficient inference algorithms for this special case based on the technique of conditional expectation maximization. Our experimental results show that our approach leads to improved performance on three real world tasks on four different data sets from the natural language processing domain

    Transferring Procedural Knowledge across Commonsense Tasks

    Full text link
    Stories about everyday situations are an essential part of human communication, motivating the need to develop AI agents that can reliably understand these stories. Despite the long list of supervised methods for story completion and procedural understanding, current AI has no mechanisms to automatically track and explain procedures in unseen stories. To bridge this gap, we study the ability of AI models to transfer procedural knowledge to novel narrative tasks in a transparent manner. We design LEAP: a comprehensive framework that integrates state-of-the-art modeling architectures, training regimes, and augmentation strategies based on both natural and synthetic stories. To address the lack of densely annotated training data, we devise a robust automatic labeler based on few-shot prompting to enhance the augmented data. Our experiments with in- and out-of-domain tasks reveal insights into the interplay of different architectures, training regimes, and augmentation strategies. LEAP's labeler has a clear positive impact on out-of-domain datasets, while the resulting dense annotation provides native explainability
    • …
    corecore