232 research outputs found

    Iterated Relevance Matrix Analysis (IRMA) for the identification of class-discriminative subspaces

    Full text link
    We introduce and investigate the iterated application of Generalized Matrix Learning Vector Quantizaton for the analysis of feature relevances in classification problems, as well as for the construction of class-discriminative subspaces. The suggested Iterated Relevance Matrix Analysis (IRMA) identifies a linear subspace representing the classification specific information of the considered data sets using Generalized Matrix Learning Vector Quantization (GMLVQ). By iteratively determining a new discriminative subspace while projecting out all previously identified ones, a combined subspace carrying all class-specific information can be found. This facilitates a detailed analysis of feature relevances, and enables improved low-dimensional representations and visualizations of labeled data sets. Additionally, the IRMA-based class-discriminative subspace can be used for dimensionality reduction and the training of robust classifiers with potentially improved performance.Comment: 17 pages, 5 figures, 1 table. Submitted to Neurocomputing. Extension of 2023 ESANN conference contributio

    Iterated Relevance Matrix Analysis (IRMA) for the identification of class-discriminative subspaces

    Get PDF
    We introduce and investigate the iterated application of Generalized Matrix Learning Vector Quantizaton for the analysis of feature relevances in classification problems, as well as for the construction of class-discriminative subspaces. The suggested Iterated Relevance Matrix Analysis (IRMA) identifies a linear subspace representing the classification specific information of the considered data sets using Generalized Matrix Learning Vector Quantization (GMLVQ). By iteratively determining a new discriminative subspace while projecting out all previously identified ones, a combined subspace carrying all class-specific information can be found. This facilitates a detailed analysis of feature relevances, and enables improved low-dimensional representations and visualizations of labeled data sets. Additionally, the IRMA-based class-discriminative subspace can be used for dimensionality reduction and the training of robust classifiers with potentially improved performance

    Tree Edit Distance Learning via Adaptive Symbol Embeddings

    Full text link
    Metric learning has the aim to improve classification accuracy by learning a distance measure which brings data points from the same class closer together and pushes data points from different classes further apart. Recent research has demonstrated that metric learning approaches can also be applied to trees, such as molecular structures, abstract syntax trees of computer programs, or syntax trees of natural language, by learning the cost function of an edit distance, i.e. the costs of replacing, deleting, or inserting nodes in a tree. However, learning such costs directly may yield an edit distance which violates metric axioms, is challenging to interpret, and may not generalize well. In this contribution, we propose a novel metric learning approach for trees which we call embedding edit distance learning (BEDL) and which learns an edit distance indirectly by embedding the tree nodes as vectors, such that the Euclidean distance between those vectors supports class discrimination. We learn such embeddings by reducing the distance to prototypical trees from the same class and increasing the distance to prototypical trees from different classes. In our experiments, we show that BEDL improves upon the state-of-the-art in metric learning for trees on six benchmark data sets, ranging from computer science over biomedical data to a natural-language processing data set containing over 300,000 nodes.Comment: Paper at the International Conference of Machine Learning (2018), 2018-07-10 to 2018-07-15 in Stockholm, Swede

    Dimensionality Reduction Mappings

    Get PDF
    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general view on dimensionality reduction based on the concept of cost functions, and, based on this general principle, extend dimensionality reduction to explicit mappings of the data manifold. This offers simple out-of-sample extensions. Further, it opens a way towards a theory of data visualization taking the perspective of its generalization ability to new data points. We demonstrate the approach based on a simple global linear mapping as well as prototype-based local linear mappings.
    corecore