2,246 research outputs found

    Discriminative Clustering by Regularized Information Maximization

    Get PDF
    Is there a principled way to learn a probabilistic discriminative classifier from an unlabeled data set? We present a framework that simultaneously clusters the data and trains a discriminative classifier. We call it Regularized Information Maximization (RIM). RIM optimizes an intuitive information-theoretic objective function which balances class separation, class balance and classifier complexity. The approach can flexibly incorporate different likelihood functions, express prior assumptions about the relative size of different classes and incorporate partial labels for semi-supervised learning. In particular, we instantiate the framework to unsupervised, multi-class kernelized logistic regression. Our empirical evaluation indicates that RIM outperforms existing methods on several real data sets, and demonstrates that RIM is an effective model selection method

    Harvesting Discriminative Meta Objects with Deep CNN Features for Scene Classification

    Get PDF
    Recent work on scene classification still makes use of generic CNN features in a rudimentary manner. In this ICCV 2015 paper, we present a novel pipeline built upon deep CNN features to harvest discriminative visual objects and parts for scene classification. We first use a region proposal technique to generate a set of high-quality patches potentially containing objects, and apply a pre-trained CNN to extract generic deep features from these patches. Then we perform both unsupervised and weakly supervised learning to screen these patches and discover discriminative ones representing category-specific objects and parts. We further apply discriminative clustering enhanced with local CNN fine-tuning to aggregate similar objects and parts into groups, called meta objects. A scene image representation is constructed by pooling the feature response maps of all the learned meta objects at multiple spatial scales. We have confirmed that the scene image representation obtained using this new pipeline is capable of delivering state-of-the-art performance on two popular scene benchmark datasets, MIT Indoor 67~\cite{MITIndoor67} and Sun397~\cite{Sun397}Comment: To Appear in ICCV 201
    • …
    corecore