1,663 research outputs found

    LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R

    Get PDF
    Locally stationary process representations have recently been proposed and applied to both time series and image analysis applications. This article describes an implementation of the locally stationary two-dimensional wavelet process approach in R. This package permits construction of estimates of spatially localized spectra and localized autocovariance which can be used to characterize structure within images.

    Discriminant analysis of multivariate time series using wavelets

    Get PDF
    In analyzing ECG data, the main aim is to differentiate between the signal patterns of those of healthy subjects and those of individuals with specific heart conditions. We propose an approach for classifying multivariate ECG signals based on discriminant and wavelet analyzes. For this purpose we use multiple-scale wavelet variances and wavelet correlations to distinguish between the patterns of multivariate ECG signals based on the variability of the individual components of each ECG signal and the relationships between every pair of these components. Using the results of other ECG classification studies in the literature as references, we demonstrate that our approach applied to 12-lead ECG signals from a particular database, displays quite favourable performance. We also demonstrate with real and synthetic ECG data that our approach to classifying multivariate time series out performs other well-known approaches for classifying multivariate time series. In simulation studies using multivariate time series that have patterns that are different from that of the ECG signals, we also demonstrate very favourably performance of this approach when compared to these other approaches.Time series, Wavelet Variances, Wavelet Correlations, Discriminant Analysis

    Nonlinear denoising of transient signals with application to event related potentials

    Full text link
    We present a new wavelet based method for the denoising of {\it event related potentials} ERPs), employing techniques recently developed for the paradigm of deterministic chaotic systems. The denoising scheme has been constructed to be appropriate for short and transient time sequences using circular state space embedding. Its effectiveness was successfully tested on simulated signals as well as on ERPs recorded from within a human brain. The method enables the study of individual ERPs against strong ongoing brain electrical activity.Comment: 16 pages, Postscript, 6 figures, Physica D in pres

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    Discriminant analysis of multivariate time series using wavelets

    Get PDF
    In analyzing ECG data, the main aim is to differentiate between the signal patterns of those of healthy subjects and those of individuals with specific heart conditions. We propose an approach for classifying multivariate ECG signals based on discriminant and wavelet analyzes. For this purpose we use multiple-scale wavelet variances and wavelet correlations to distinguish between the patterns of multivariate ECG signals based on the variability of the individual components of each ECG signal and the relationships between every pair of these components. Using the results of other ECG classification studies in the literature as references, we demonstrate that our approach applied to 12-lead ECG signals from a particular database, displays quite favourable performance. We also demonstrate with real and synthetic ECG data that our approach to classifying multivariate time series out performs other well-known approaches for classifying multivariate time series. In simulation studies using multivariate time series that have patterns that are different from that of the ECG signals, we also demonstrate very favourably performance of this approach when compared to these other approaches
    corecore