6 research outputs found

    Observing and recommending from a social web with biases

    No full text
    The research question this report addresses is: how, and to what extent, those directly involved with the design, development and employment of a specific black box algorithm can be certain that it is not unlawfully discriminating (directly and/or indirectly) against particular persons with protected characteristics (e.g. gender, race and ethnicity)?Comment: Technical Report, University of Southampton, March 201

    Essays on Structural Econometric Modeling and Machine Learning

    Get PDF
    This dissertation is composed of three independent chapters relating the theory and empirical methodology in economics to machine learning and important topics in information age . The first chapter raises an important problem in structural estimation and provide a solution to it by incorporating a culture in machine learning. The second chapter investigates a problem of statistical discrimination in big data era. The third chapter studies the implication of information uncertainty in the security software market. Structural estimation is a widely used methodology in empirical economics, and a large class of structural econometric models are estimated through the generalized method of moments (GMM). Traditionally, a model to be estimated is chosen by researchers based on their intuition on the model, and the structural estimation itself does not directly test it from the data. In other words, not sufficient amount of attention is paid to devise a principled method to verify such an intuition. In the first chapter, we propose a model selection for GMM by using cross-validation, which is widely used in machine learning and statistics communities. We prove the consistency of the cross-validation. The empirical property of the proposed model selection is compared with existing model selection methods by Monte Carlo simulations of a linear instrumental variable regression and oligopoly pricing model. In addition, we propose the way to apply our method to Mathematical Programming of Equilibrium Constraint (MPEC) approach. Finally, we perform our method to online-retail sales data to compare dynamic model to static model. In the second chapter, we study a fair machine learning algorithm that avoids a statistical discrimination when making a decision. Algorithmic decision making process now affects many aspects of our lives. Standard tools for machine learning, such as classification and regression, are subject to the bias in data, and thus direct application of such off-the-shelf tools could lead to a specific group being statistically discriminated. Removing sensitive variables such as race or gender from data does not solve this problem because a disparate impact can arise when non-sensitive variables and sensitive variables are correlated. This problem arises severely nowadays as bigger data is utilized, it is of particular importance to invent an algorithmic solution. Inspired by the two-stage least squares method that is widely used in the field of economics, we propose a two-stage algorithm that removes bias in the training data. The proposed algorithm is conceptually simple. Unlike most of existing fair algorithms that are designed for classification tasks, the proposed method is able to (i) deal with regression tasks, (ii) combine explanatory variables to remove reverse discrimination, and (iii) deal with numerical sensitive variables. The performance and fairness of the proposed algorithm are evaluated in simulations with synthetic and real-world datasets. The third chapter examines the issue of information uncertainty in the context of information security. Many users lack the ability to correctly estimate the true quality of the security software they purchase, as evidenced by some anecdotes and even some academic research. Yet, most of the analytical research assumes otherwise. Hence, we were motivated to incorporate this “false sense of security” behavior into a game-theoretic model and study the implications on welfare parameters. Our model features two segments of consumers, well-and ill-informed, and the monopolistic software vendor. Well-informed consumers observe the true quality of the security software, while the ill-informed ones overestimate. While the proportion of both segments are known to the software vendor, consumers are uncertain about the segment they belong to. We find that, in fact, the level of the uncertainty is not necessarily harmful to society. Furthermore, there exist some extreme circumstances where society and consumers could be better off if the security software did not exist. Interestingly, we also find that the case where consumers know the information structure and weight their expectation accordingly does not always lead to optimal social welfare. These results contrast with the conventional wisdom and are crucially important in developing appropriate policies in this context

    Governing algorithms in the big data era for balancing new digital rights - designing GDPR compliant and trustworthy XAI systems

    Get PDF
    This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems

    Discrimination aware classification for imbalanced datasets

    No full text
    corecore