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ABSTRACT 

Shimao, Hajime PhD, Purdue University, August 2018. Essays on Structural Econometric 
Modeling and Machine Learning. Major Professor: Ralph Siebert. 

This dissertation is composed of three independent chapters relating the theory and 

empirical methodology in economics to machine learning and important topics in infor-

mation age . The first chapter raises an important problem in structural estimation and 

provide a solution to it by incorporating a culture in machine learning. The second chapter 

investigates a problem of statistical discrimination in big data era. The third chapter studies 

the implication of information uncertainty in the security software market. 

Structural estimation is a widely used methodology in empirical economics, and a large 

class of structural econometric models are estimated through the generalized method of 

moments (GMM). Traditionally, a model to be estimated is chosen by researchers based on 

their intuition on the model, and the structural estimation itself does not directly test it from 

the data. In other words, not sufficient amount of attention is paid to devise a principled 

method to verify such an intuition. In the first chapter, we propose a model selection for 

GMM by using cross-validation, which is widely used in machine learning and statistics 

communities. We prove the consistency of the cross-validation. The empirical property of 

the proposed model selection is compared with existing model selection methods by Monte 

Carlo simulations of a linear instrumental variable regression and oligopoly pricing model. 

In addition, we propose the way to apply our method to Mathematical Programming of 

Equilibrium Constraint (MPEC) approach. Finally, we perform our method to online-retail 

sales data to compare dynamic model to static model. 

In the second chapter, we study a fair machine learning algorithm that avoids a statistical 

discrimination when making a decision. Algorithmic decision making process now affects 

many aspects of our lives. Standard tools for machine learning, such as classification and 



xi 

regression, are subject to the bias in data, and thus direct application of such off-the-shelf 

tools could lead to a specific group being statistically discriminated. Removing sensitive 

variables such as race or gender from data does not solve this problem because a disparate 

impact can arise when non-sensitive variables and sensitive variables are correlated. This 

problem arises severely nowadays as bigger data is utilized, it is of particular importance 

to invent an algorithmic solution. Inspired by the two-stage least squares method that is 

widely used in the field of economics, we propose a two-stage algorithm that removes 

bias in the training data. The proposed algorithm is conceptually simple. Unlike most of 

existing fair algorithms that are designed for classification tasks, the proposed method is 

able to (i) deal with regression tasks, (ii) combine explanatory variables to remove reverse 

discrimination, and (iii) deal with numerical sensitive variables. The performance and 

fairness of the proposed algorithm are evaluated in simulations with synthetic and real-

world datasets. 

The third chapter examines the issue of information uncertainty in the context of infor-

mation security. Many users lack the ability to correctly estimate the true quality of the 

security software they purchase, as evidenced by some anecdotes and even some academic 

research. Yet, most of the analytical research assumes otherwise. Hence, we were mo-

tivated to incorporate this “false sense of security” behavior into a game-theoretic model 

and study the implications on welfare parameters. Our model features two segments of 

consumers, well- and ill-informed, and the monopolistic software vendor. Well-informed 

consumers observe the true quality of the security software, while the ill-informed ones 

overestimate. While the proportion of both segments are known to the software vendor, 

consumers are uncertain about the segment they belong to. We find that, in fact, the level of 

the uncertainty is not necessarily harmful to society. Furthermore, there exist some extreme 

circumstances where society and consumers could be better off if the security software did 

not exist. Interestingly, we also find that the case where consumers know the information 

structure and weight their expectation accordingly does not always lead to optimal social 

welfare. These results contrast with the conventional wisdom and are crucially important 

in developing appropriate policies in this context. 
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1. CROSS VALIDATION BASED MODEL SELECTION VIA 

GENERALIZED METHOD OF MOMENTS 

1.1 Introduction 

Structural estimation of economic models is one of the most widely used methodolo-

gies in empirical economics nowadays in variety of fields.Structural estimation enables 

researchers to interpret latent variable, as well as it allows researchers to perform coun-

terfactual simulations. Arguably, however, one of the largest shortcoming in the structural 

estimation procedure lies in the selection of a proper model. That is, the specification 

of estimation models is usually chosen by researchers and implementation of structural 

estimation itself does not directly address on it from the data, because the estimation is 

performed by assuming the model reflects the true data generating process ((Angrist and 

Pischke, 2010)). On a paper it is a common practice for economists to verbally argue 

and defend their model specification in a descriptive way. However, since the validity of 

the counterfactual simulation crucially depends on the goodness of the model, verifying 

and choosing a proper model empirically is of particular importance. Especially, we often 

simplify a model for the ease of tractability: Such simplifications is preferred to be subject 

to some assessment. 

When a structural model is estimated in economics, researchers often use generalized 

method of moments (GMM) as well as maximum likelihood. As to selecting a true model, 

(Smith, 1992) and (Rivers and Vuong, 2002) offer a model selection procedure for GMM 

based on the difference of empirical moments. Their core idea is a simple use of the 

GMM minimand as a fitness of the model with the observed data: That is, to select the 

model of the smallest GMM minimand when it is estimated1. Although such a procedure is 

1The theory provided in (Rivers and Vuong, 2002) applies to broader range of model selection criteria. 
However, it is often implemented as GMM minimand comparison. See (Bonnet and Dubois, 2010) or (Berto 
Villas-Boas, 2007) for example. 
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asymptotically consistent in choosing a true or ”better” model, the performance of model 

selection with limited sample size is still uncertain. In some applications, economists have 

to make an inference from a relatively small number of observations. Given a limited size 

of the sample, their procedures may be subject to ”over-fitting”: excessively complicated 

models can fit tighter to the observations in hand with better ”goodness-of-fit” criterion, 

and thus is selected as a better model even if the model is not very true. 

To avoid over-fitting problem, some model selection criteria such as AIC-GMM or 

BIC-GMM ”penalize” the number of parameters in a model ((Andrews, 1999)). However, 

the complexity of economic models is not simply measured by the number of parameters. 

Structural model may include non-parametric components in specification (e.g., (Gautier 

and Kitamura, 2013)), where we cannot apply a penalization based on number of pa-

rameters. Additionally, estimation procedure sometimes involves nonparametric approx-

imation only for certain models. For example, estimation of dynamic demand model in 

(Gowrisankaran and Rysman, 2012) includes a nonparametric approximation of a value 

function, which may make their model more flexible than static demand model. To date, 

it is not well understood how these factors contribute to the over-fitting issue nor how to 

penalize its flexibility. 

In this paper, we offer a novel approach to this problem that helps researchers to identify 

the best model specification from the data. Our idea is to apply the cross-validation (CV) 

method, which is commonly used in other areas such as machine learning, in evaluating the 

predictive power of the model. The main idea behind cross-validation is to split the data 

into several portions so that test of a model fit is implemented on a different data from the 

one used for estimating parameters. As a result, the estimated moment suffers a smaller 

over-fitting than in-sample model selection. 

The largest advantage of sample splitting lies in its wide range of potential applications. 

On applying CV, one does not need to take the number of model parameters explicitly. As 

a result, it can select the true model among parametric, non-parametric and even semi-

parametric models. Moreover, CV can be applied not only in selecting models, but also 

selecting hyper-parameters of estimation and even estimation method itself. For example, 
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estimation of dynamic model often includes approximation of value function on a discrete 

grid space, where the coarseness of the grid space has not been paid adequate attention 

though it heavily influences the performance of estimation. As to the example of estimation 

method, random coefficient demand system can be estimated in various specifications, such 

as parametric or non-parametric, through various methodologies such as nested fixed point 

algorithm or constrained optimization approach (MPEC, (Su and Judd, 2012)) and they 

may yield different results especially in limited sample size. 

Economists typically evaluate estimation techniques and model specification by check-

ing how the true parameters are recovered in a Monte-Carlo simulation. However, the best 

specification or methodology may vary across different data or the ”true” data generating 

process that researchers do not observe. Thus, it is preferable to make an assessment in 

real-world data as well, and CV offers a practical approach to that end. Taking a wide 

range of applications into consideration, conducting CV in selecting models deserves a 

significant portion of attention. 

Although CV is commonly used in data science fields such as machine learning and data 

mining, its applicability to economic models is not obvious. In machine learning and data 

mining, the primal concern lies in how accurate the prediction of a regressor or classifier 

is. Meanwhile, in empirical economics, identifying the model reflecting the reality closer 

and estimating its model parameters are of primal concern, and machine learning literature 

does not provide a sufficient guarantee in identification of a model. This gap remains to be 

closed in applying data science methods in econometrics. Taking this into consideration, 

we propose an identifiable CV method for GMM. 

We first prove the consistency of cross-validation algorithm: That is, the algorithm 

identifies a correctly specified model from misspecified models with the probability ap-

proaching to 1 as the number of data increases. When a model is estimated through 

likelihood maximization, (Yang, 2007) proved the consistency of the cross-validation in 

non-parametric regression model selection. We prove an analogous result for GMM version 

of CV algorithm. 
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After giving the consistency, we test the performance of our cross-validation algorithm 

with a limited number of samples by Monte-Carlo simulation. Firstly, we examine a simple 

instrumental variable regression. We observe our algorithm selects a correctly specified 

mode over a misspecified model with high probability even when data size is limited. 

Importantly, our algorithm finds the correctly specified model even when the alternative 

model has higher flexibility (i.e., more parameters) than the true model, suggesting that it 

is robust to over-fitting. Furthermore, we compare the performance of our algorithm with 

Rivers-Vuong type GMM minimand comparison approach and also approaches based on 

GMM-AIC and GMM-BIC criteria that (Andrews, 1999) suggested. The result implies 

that the comparison of GMM minimand suffers over-fitting, and as a result it often selects 

a misspecified model of higher complexities. Though GMM-AIC and GMM-BIC based 

approaches attempt to solve the over-fitting problem by penalizing the flexibility of model, 

their performance turns out to be extremely sensitive to the model specification, and as a 

result, they often fail to find the correctly specified model. 

Secondly, we conduct another experiment in more complex nonlinear models. We use 

a collusive pricing model similar to the ones of (Bresnahan, 1987) and (Hu et al., 2014), 

where their objective of model selection is to detect a potential tacit collusion from the 

sales and price data. We simulate the price and quantity data from perfectly competitive 

setting and partially collusive setting, and test if our algorithm discovers the true conduct 

or not. We show that our cross-validation procedure generally perform well to identify the 

true pricing structure from a limited amount of data. We show how CV outperforms the 

simple GMM fitting comparison without data split. 

In addition, we propose a method to apply cross-validation algorithm when estima-

tion is based on Mathematical Programming of Equilibrium Constraint (MPEC) approach. 

MPEC is proposed by (Su and Judd, 2012) and is one of the state-of-the-art estimation 

methodologies. MPEC achieves high computational efficiency by avoiding the nested 

fixed point algorithm, and its convenience is earning significant attention especially in the 

industrial organization research community. Though application of CV to MPEC is not 

straightforward, we provide a modified algorithm of CV applicable to MPEC estimation. 
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Finally, we perform our algorithm on a cutting-edge structural model with real-world 

data. The model we adopt is dynamic demand and dynamic pricing model of (Conlon, 

2012). The dynamic models are considered to be the recent frontier of the industrial 

organization community and used in many applications (such as (Lee, 2013)). However, 

the superiority of the dynamic models compared with static models on its explainability of 

the consumer behavior is not sufficiently supported. Likewise, the dynamic pricing model 

is a frontier research topic in the industrial organization ((Nair, 2007),(Luo, 2015)), but its 

empirical support against static model is only descriptive. We apply our CV algorithm to 

the market data of an online retailer based in the UK to test dynamic models against static 

models. We show that the results are mixed across different products, even though they are 

sold by the same retailer. 

The paper proceeds as follows. In Section 2, we formally introduce cross-validation 

in GMM and discuss its econometric property. In particular, we prove its asymptotic 

consistency. In Section 3, we demonstrate a Monte-Carlo experiment of model selection 

in IV regression. In Section 4, we perform a further experiment in an oligopolistic pricing 

model as a nonlinear example. Section 5 explains how we can modify the algorithm when 

it is applied to MPEC approach. Section 6 presents the setup and results of the real-world 

application of the dynamic pricing model using online-retailer data. Section 7 concludes 

the paper. 

1.2 Cross-validation Approach to GMM Model Selection 

1.2.1 Setup 

Let v = {vt} be a random vector of observed data in V ⊂ Rd . Let Mi for i = 1, 2 be 

the two candidate models to explain the observed data. Each model, if correctly specified, 
qiis characterized by a set of moment conditions f (i) : V ×Θ(i) → R  such that 

(i) (i)Mi ⇒ E[f (i)(vt, θ0 )] = 0 for a unique θ0 ∈ Θ(i) 



� � �� � � �

�

6 

where θ(i) ∈ Θ(i) denotes the parameters of a model i to be estimated. Let pi be the 

dimension of θ(i). Given the observation {vt}t=1,,,T , the parameters of each model are 

estimated via GMM; 

(̂i) (i)
(θ(i))θT = arg min QT (1.1) 

θ(i)∈Θ(i) 

where 

T T 
(i) 1 (i) 1 

QT (θ
(i)) =  f (i)(vt, θ

(i)) WT f (i)(vt, θ
(i)) . 

T T 
t=1 t=1 

Let plimWT 
(i) 

= W (i), and the population analogue of the moment conditions be 
T →∞ 

Q
(
0 
i)
(θ(i)) =  E[f (i)(vt, θ

(i))] W (i)E[f (i)(vt, θ
(i))]. 

(i) (i)Assume that plimθ = θ exists. The null hypothesis is that M1 and M2 are asymptoti-T 0 
T →∞ 

cally equivalent; 

(1) (1) (2) (2)H0 : Q (θ ) =  Q (θ ).0 0 0 0 

Two alternative hypotheses are that M1 is asymptotically better than M2 or the other way 

around; 

H(a) (1) (1) (2) (2)
= Q (θ ) < Q  (θ ),1 0 0 0 0 

H(b) (1) (1) (2) (2)
= Q (θ ) > Q  (θ ).1 0 0 0 0 

1.2.2 Cross-validation 

Cross-validation is a model selection procedure in which the data is split into two 

subsets called training set and validation set. The set of parameters of each model is 

estimated in the training set, and its goodness is evaluated with the validation set. Let 

r ≥ 2, k < r  be integers. In leave-k-out r-fold cross-validation ((k, r)-CV), we first split 

T datapoints into r disjoint subsets. At each round of CV, We use r − k of them as the 

training data, and the other k as the validation data. Multiple number of rounds among 

possible splits are performed to reduce variability. 



�  �  

�

� � �� � � �

� � �

�

7 

Namely, let 

NTj,r = {  T (j − 1)/r + 1, T (j − 1)/r + 2, . . . ,  Tj/r  �} 

be the indices of the j-th split. Let {S ⊂ {1, 2, . . . , r} : |S| = r − k} and 

NS = NTj,r 

j∈S 

be subset of datapoints consisted of folds in S. The moment on this datapoints is denoted 

as 

(i) 1 (i) 1 
Q (θ(i)) =  f (i)(vt, θ

(i)) W f (i)(vt, θ
(i)) ,S |NS | S |NS|

t∈NS t∈NS 

and the model trained to minimize the moment is denoted as 

(̂i) (i)
(θ(i)).θS = arg min QS 

θ(i)∈Θ(i) 

Once the model is trained, it is validated by the rest of datapoints as: ⎧  
⎧  

⎫⎬ 
⎫⎬1 1 

Q
(i) (i)

θS,valid(
ˆ 
S ) =  (i) (i)

W f (i)(vt, θ̂
(i) 
S ) , ⎭ 

f (i)(vt, θ̂ )S S|N\S | |N\S |⎩ ⎩⎭ 
t∈N\S t∈N\S 

where N\S = {1, . . . , T} \ NS . In  (k, r)-CV, the averaged validation score of each model 

(i) 1 (i) (i)
Qvalid = QS,valid(θ̂

 
S ) 

rCk
S⊂{1,2,...,r}:|S|=r−k 

is compared, and the model of smaller averaged validation score is selected. The procedure 

is summarized in Algorithm 1. 

1.2.3 Consistency of CV in Model Selection 

In this section, we derive the consistency of CV in GMM model selection. Let one of 

the models is misspecified. Without loss of generality, we assume the first model is the true 

model2. The true model satisfies the following moment condition: 

E[f (1)(v (1) 
t, θ  )] = 0.0 

2Of course, the model selection method should not exploit this fact. 
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The latter model is assumed to be misspecified: that is, for any θ(2) the following holds: 

E[f (2)(vt, θ
(2))] > 0. 

The misspecification is divided into two local and non-local ones (Hall, 2005). 

Assumption 1.2.1 The false model is globally misspecified if there exists μ(θ) such that 

||μ(θ)|| > 0 and 

f (2)(vt, θ
(2))inf E = μ(θ). 

θ(2)∈Θ(2) 

Alternatively, we can make a weaker assumption that the sample moment of the misspec-

ified model converges to zero slower than that of the true model. This assumption covers 

cases where the misspecified model is more general (or too general) than the true model. 

This is the case, for example, the utility function in the true model is a linear function of 

price but the misspecified model incorporates higher order polynomials. 

Assumption 1.2.2 The false model is said to be locally misspecified if, for every ∈ (0, 1), 
(1) (2)there exists c > 0 such that, when T is sufficiently large, P [Q .valid < Qvalid] ≥ 1 − 

Note that, in either definition of misspecification, the researcher does not know which 

model is true, and our interest lies in consistently choosing the true model over a mis-

specified model based on the dataset. 

In the previous literature, Smith (1992) offers a pairwise comparison process for con-

sistent model selection. However, it has some practical disadvantages when applied to 

empirical research: (i) A pairwise comparison could be extremely demanding if the space 

of candidate models is large, and (ii) it may be subject to over-fitting problem. To avoid 

those issues, the most common practice in the field of machine learning is to apply cross-

validation (CV) algorithm. In the literature in statistics, Yang (2006,2007) have shown that 

even the simplest CV procedure can find a true model consistently when the data structure 

is regression form, i.e. yi = f(xi) +  i. Likewise to the literature, we define a consistent 

model selection as below: 
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Definition 1.2.1 Assume that model 1 is correct while model 2 is wrong in a sense that it is 

globally misspecified. A selection rule is said to be consistent if the probability of selecting 

model 1 approaches 1 as T −→ ∞. 

To derive the consistency of CV, we define the following assumptions. 

Assumption 1.2.3 (strict stationarity) v = {vt} is a strictly stationary process. 

Assumption 1.2.4 (regularity condition) Let f (i)(vt, θ) and its population analogue E[f (i)(vt, θ)] 

be continuous on θ(i) for each vt. Let Θ(i) be compact and E[supθ(i)∈Θ(i) f (i)(vt, θ)] be 

bounded. 

Assumption 1.2.5 (ergodicity) v = {vt} is an ergodic process. 

Assumption 1.2.6 (identification condition) Let 

∂f (i)(vt, θ0
(i)
)

E 
∂θ(i) 

have rank d. 

In the following we prove the following theorem. 

Theorem 1.2.1 Let Assumptions 1.2.3–1.2.6 hold. Then, (r, k)-CV is consistent. 

Proof of Theorem 1.2.1 

We first states lemmas that are proven in (Hall, 2005), and by using them we prove the 

theorem. 

Lemma 1.2.1 (Consistency of the estimator in the correct model, Theorem 3.1 in (Hall, 

2005)) Let S ⊂ {1, . . . , r}, |S| = r − k be any split in (k, r)-CV, and model 1 be correctly 

specified. Let Assumptions 1.2.3–1.2.6 hold. Then, 

(1) (1)ˆ p θθ → (1.2)S 0 

as T/r  → ∞. 
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Lemma 1.2.2 (Property of a globally misspecified estimator, Theorem 5.2 in (Hall, 2005)) 

Let S ⊂ {1, . . . , r}, |S| = r − k be any split in (k, r)-CV. Let Assumptions 1.2.3–1.2.6 

hold. Then, here exists c > 0 such that 

(i) (i) p
Q0 (θ̂

 
S ) → c (1.3) 

as T/r  → ∞. 

Lemma 1.2.3 (Uniform convergence of the moment, Lemma 3.1 in (Hall, 2005)) Let 

Assumptions 1.2.3–1.2.6 hold. Then, 

(i) (1)
(θ(1))| p 

sup |QS,valid(θ
(1)) − Q0 → 0 (1.4) 

θ(1)∈Θ(1) 

(2) (2)
(θ(2))| p 

sup |QS,valid(θ
(2)) − Q0 → 0 (1.5) 

θ(2)∈Θ(2) 

Proof [Proof of Theorem 1.2.1] We show that, 

(1) p 
sup |Qvalid| → 0 (1.6) 

θ(1)∈Θ(1) 

and there exists c > 0 such that 
(2) p|Q → cvalid| (1.7) 

which imply Theorem 1.2.1. First, 

(1) (1) (1) (1) (1) (1) (1)|Qvalid − Q0 (θ0 )| ≤  |QS,valid(θ̂
 
S ) − Q0 (θ0 )|

S∈{1,...,r}:|S|=r−k 

(1) (1) (1) (1) (1) (1) (1) (1)≤ |QS,valid(θ̂
 
S ) − Q0 (θ̂

 
S )|+ |Q0 (θ̂

 
S ) − Q0 (θ0 )|

S∈{1,...,r}:|S|=r−k 

Inequality (1.4) implies the first term converges to zero in probability, and the second term 

converges to zero in probability by (1.2). In other words, 

(1) (1) (1) p|Qvalid(θ
(1)) − Q0 (θ0 )| → 0 (1.8) 

and by Assumption 3.3 in (Hall, 2005), 

(1) (1)
Q0 (θ0 ) = 0  (1.9) 
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and thus inequality (1.6) is derived. We next show (1.7). We have, 

(2)
Qvalid 

(2) (2) 1 (2) (2) (2) (2) (2) (2) (2) (2)≥ Q0 (θ0 )− |QS,valid(θ̂
 
S )− Q0 (θ̂

 
S )| − |Q0 (θ̂

 
S )− Q0 (θ0 )| ,

Cr k
S∈{1,...,r}:|S|=r−k 

where the first term of the RHS converges to c > 0 in probability by (1.2). The second term 

converge to zero in probability by (1.5). The third term goes to zero in probability by our 

assumption. Therefore (1.7) holds. 

1.2.4 Statistical testing 

This section proposes a statistical hypothesis testing on our CV-based model selection. 

Let 
(1) (2)|NS |1/2(Qvalid − Qvalid)RCV = 
σ̂2 

be the test statistics that indicates either the first or the second hypothesis is better than the 

other. Here, σ̂2 is the estimator of the limiting variance σ0
2 of RCV. The null hypothesis of 

the test is 
(1) (1) (2) (2)

H0 : Q (θ ) = Q (θ ).0 0 0 0 

These are two alternative hypotheses of interest: The first one indicates M1 is better than 

M2. That is, 
(a) (1) (1) (2) (2)

H : Q (θ ) < Q  (θ )1 0 0 0 0 

and the second one indicates M2 is better than M2: 

(b) (1) (1) (2) (2)
H : Q (θ ) > Q  (θ ).1 0 0 0 0 

Following (Rivers and Vuong, 2002; Hall and Pelletier, 2011), we discuss conditions where 

the statistics RCV is asymptotically normal. We first consider the testing statistics in the 

general case in Section 1.2.4. Moreover, we show in the case the dependency among 

splits are sufficiently small in Section 1.2.4, where the statistics is represented in a much 

computationally efficient way. 
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We pose the following assumption on the structure of the weight matrix that is essen-

tially the same as (Hall and Pelletier, 2011): 

Assumption 1.2.7 (parameterization of the weight matrix) Let W (i) depends on a vector 
(i) (i) (i) (i) (i)nuisance parameter τ and τ̂  is the estimator of τ as W (i) = W (i)(τ ) and W = 0 S 0 0 S 

(i) (i)
WS (τ̂S ). It is assumed that the nuisance parameter satisfies 

(i) (i) (i)|NS |1/2(τ̂ − τ ) =  −A(i)|NS |−1/2 Y + op(1)S 0   t 

t∈NS 

(i) (i)for some symmetric matrix of constants A  and data-dependent vector Yt , and the weight 

matrix satisfies 

(i) (i) (i)|NS |1/2 vech[W ] − vech[W (i)] = Δ(i)|NS|1/2(τ̂ − τ ) +  op(1)S S 0 

for some matrix of constants Δ(i). 

To discuss statistical testing, we need to have asymptotic normality property. The 

following assumption guarantees that the moment is “well-behaved” around the optimal 
(i)value θ .0 

Assumption 1.2.8 (regularity condition on derivative) 

• The derivatie matrix ∂f (i)(v, θ(i))/∂θ(i) exists and is continuous on Θ(i) for each v. 

(i)• θ0 lies in the interior of Θ(i). 

• E[∂f (i)(v, θ0
(i)
)/∂θ(i) ] exists and is finite. 

• E[∂f (i)(v, θ(i))/∂θ(i) ] continuous on some neighborhood N of θ0
(i). 

• supθ(i)∈N ||(1/T ) t
T 
=1 ∂f

(i)(v, θ(i))/∂θ(i) − E[∂f (i)(v, θ(i))/∂θ(i) ]|| →p 
0. 

For the ease of discussion, we further add the following notation. Let F (i) 
= |N\S |−1/2 {f (i)(vt,S t∈N\S 

(i) (i)Let G = E[∂f (i)(vt, θ
(i))/∂θ(i)], and its empirical counterpart be G = |NS |−1 (∂f (i)(vt, θ

(i))/∂S t∈N\S 

Let {S1, . . . , S  } = {S ⊂ {1, 2, . . . , r} : |S| = r − k} be the set of all splits. We also r Ck 

denote θ = (θ(1), θ(2)), and θ0 and θ̂  
S are defined in the same way. 

0 
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General splitting 

Then, V  is the ⎞⎛ 

⎜⎜⎜⎜⎜⎜⎝ 

c1,1 c1,2 · · ·  c1,r Ck 

c2,1 c2,2 · · ·  c2,r Ck 

. . . . . . . . . . . . 

c c · · ·  c rCk,1 r Ck,2 rCk,r Ck 

⎟⎟⎟⎟⎟⎟⎠ 

V  = 

where cj,j is a submatrix such that ⎞⎛ 

cj,j = lim Cov 
T →∞ 

⎜⎝  t(θ0),  t (θ0)
⎟⎠ 

t∈N\Sj 
t ∈N\Sj 

f (1)(vt, θ
(1)) − E[f (1)(vt, θ

(1)] , Y (1) 
, f (2)(vt, θ

(2)) − E[f (2)(vt, θ
(2))] , Y (2)

 t(θ) =  .t t 

Moreover, 

R(1), R(2), R(1), R(2) , R(2)R  = , . . . , R(1) 
        ⎤⎡ 

2W (i)
E[f (1)(vt, θ

(1))]
R(i) =  ⎣ ⎦ 

(i)
Δ(i) BiE[f

(1)(vt, θ
(1))] ⊗ E[f (1)(vt, θ

(1))]−A  

where Bi is the q2 × qi(qi + 1)/2 matrix such that vec(W (i)) =  Bivech(W
(i)).i 

(1) (2) (1) (2) (1) (2)
Assumption 1.2.9 1. Assume that [F , F  , F  , F  , . . . , F  , F  ] → N(0,Σ(θ)).S1 S1 S2 S2 S S rCk rCk 

Where Σ(θ) is a positive semi-definite matrix of constants. 

2. rank{G(i)} = d.0 

3. S1/2(θ̂  
S 
(i) − θ(i)) =  Op(1). 

4. The empirical estimator of each Σ(θ) converges as ˆ θS ) → Σ(θ0).Σ(ˆ 

Theorem 1.2.2 (asymptotic normality of RCV) Assume that both models M1 and M2 are 

misspecified. Assume that Assumption 1.2.9 holds. Assume Assumptions 1.2.3, 1.2.4, 1.2.5, 

and 1.2.8 hold. Assume that the null hypothesis H0 holds. Let W (i) = Iqi . Then, 

RCV → N(0, 1). 
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Remark 1.2.1 Theorem 1.2.2 poses the assumption that both models are misspecified. 

As discussed in (Hall and Pelletier, 2011), this assumption is essential: One can check 

that, under correctly specified models, the distribution of RCV does not have asymptotic 

normality. 

Remark 1.2.2 As discussed in (Hall and Inoue, 2003) a constant weight matrix has the 

best rate of convergence in misspecified models and thus the assumption of identity W (i) in 

Theorem 1.2.2 is reasonable. 

Proof [Proof of Theorem 1.2.2] The theorem is an extension of Theorem 1 in (Hall and 
(i) (i)Pelletier, 2011) to multiple splitting. The mean value theorem applied to QS,valid(θ̂

 
S ) 

(i)around θ , we obtain0 ⎧  
⎫⎬∂QS, 

(i)
valid(θ

(i))(i) (i) (i) (i)
θS,valid(
ˆ 

S,valid(θ (i) (i)− θQ ) =  Q ) +  (θ̂  )0 0S ∂θ(i) S ⎩ ⎭ 
θ(i)=θ ̄(i) 

S 

(i) (i) (i)where θ̄ = λSθ + (1  − λS )θ̂  for some λS ∈ [0, 1]. LetS 0 S 

(i) (i) (i)
) W (i) (i)

Φ(i)(θ ) = 2G (θ E[f (i)(vt, θ  )].0 0 0 0 

From our assumptions, we obtain 

(i)
∂ˆ(i) (i) (i) (i) θS (i) (i)

QS,valid(θ̂
 
S ) =  QS,valid(θ0 ) +  (θ̂  

S − θ0 ) +  op(|N\S |−1/2),
∂θ(i) 

and thus 

(1) (1) (2) (2) (1) (1) (2) (2)|N\S |1/2[QS,valid(θ̂
 
S ) − QS,valid(θ̂

 
S )] = |N\S |1/2[QS,valid(θ0 ) − QS,valid(θ0 )] 

Φ(1)(θ
(1) 

S1/2(
(̂1) (1)

+ ) θ − θ )0 S 0 

Φ(2)(θ
(2) 

S1/2(
(̂2) (2)− ) θ − θ )0 S 0 

+ op(1). (1.10) 

(i) (i) (i)Note that the GMM estimator minimizes the moment condition, which implies G (θ̂ ) W (1/|N\S |−1)S S S 

0. This fact implies the third and fourth terms of (1.11) vanishes. Namely, 

(1) (1) (2) (2) (1) (2)|N\S |1/2[QS,valid(θ̂
 
S ) − QS,valid(θ̂

 
S )] = |N\S |1/2[QS,valid(θ

(1)) − QS,valid(θ
(2))] 

+ op(1). (1.11) 
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With the choice W (i) = Iqi for the weighting matrix, and by using the symmetry of the 

moment we obtain 

(1) (1) (2) (2)|N\S |1/2[QS,valid(θ̂
 
S ) − QS,valid(θ̂

 
S )] = 

μ(1)(θ
(1) 

[f (1)(v (1)
) − μ(1)(θ

(1)
2 )|N\S|−1/2 

t, θ  )]0 0 0 
t∈N\S 

− μ(2)(θ
(2) 

[f (2)(v (2)
) − μ(2)(θ

(2)
)|N\S |−1/2 

t, θ  )] + op(1),0 0 0 
t∈N\S 

which, combined with our assumptions, completes the proof. 

When dependency among validation splits is small 

Calculating the asymptotic variance of Theorem 1.2.2 requires a calculation of a matrix 

with its size proportional to the number of splits, which in some cases is computationally 

prohibitive. This section consider the case where the dependency between the validation 

data is sufficiently small. In such a case, we can circumvent the computation of a large 

matrix. 

In particular, the leave-one-out CV (special case of our CV with k = 1) when each dat-

apoint is identically and independently distributed (i.i.d), the following assumption holds: 

Assumption 1.2.10 Assume that each validation split {N\Sj } is independent and identi-

cally distributed. 

Theorem 1.2.3 (asymptotic normality of RCV, Leave-one-out) Let assumptions in Theo-

rem 1.2.2 hold. Let Assumption 1.2.10 holds. Then, the limit variance is written as 

σ2 Rsingle V single(S)Rsingle=      

S∈{S⊂{1,2,...,r}:|S|=r−k} 
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where 

Rsingle R(1), R(2)=      ⎡ ⎤ 
2W (i)

E[f (1)(vt, θ
(1))]

Rsingle,(i) ⎣ ⎦=   (i)
Δ(i) BiE[f

(1)(vt, θ
(1))] ⊗ E[f (1)(vt, θ

(1))]−A  

V single(S) = lim Var(  t) (1.12)  
T →∞ 

t∈N\S 

And The asymptotic normality holds: 

RCV → N(0, 1). 

The proof of Theorem 1.2.10 directly follows by following the same steps as Theorem 1.2.2 

with additional fact that Assumption (1.2.10) implies the block-diagonal property of V  as 

ci,j → 0 for i = j and the identity of each block. 

1.3 Monte-Carlo Experiments in Linear Model 

In this section we present a simple simulation of instrumental variables (IV) regression 

models to illustrate the consistency of our cross-validation algorithm of model selection. 

This example also highlights how GMM-minimand-based model comparison and cross-

validation can exhibit different results. The setting is similar to the one on (?). Suppose the 

true data generating process is 

y = X1β
1 + X2β

2 + Z2α + , 

where y is a T × 1 vector and X1 and X2 are T × p1 and T × p2 matrix respectively. X1 

and X2 are generated from instrumental variables as 

X1 = Z1δ
1 + ξ1 , 

X2 = Z2δ
2 + ξ2 , 

where Z1 and Z2 are T × c1 and T × c2 matrix respectively. 
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We consider a case where we have two candidate models to compare. The first model 

exploits the explanatory variables X1 and instrumental variables Z1. 

M1 :y = X1β + 1 , 

E[Z1
1] = 0, 

whereas the second model employs X2 and Z2; 

M2 :y = X2β + 2 , 

E[Z2
2] = 0. 

Each model has different explanatory variables as well as the set of instrumental vari-

ables so that two models are non-nested. In addition, there are two important differences 

between the two candidates. First, the second model can be ”misspecified” when α = 0, be-

cause the instrumental variables Z2 influences y directly and thus IVs are not independent 

from 2 . When |α| > 0 and does not decrease with the number of observations, i.e. α = 10, 

it is globally misspecified, which results in inconsistent estimates of the parameters. 

The second difference is that the number of the variables. In the following, we assume 

that p1 ≤ p2, meaning that the second model has a larger number of explanatory variables. 

As discussed earlier, this may cause ”over-fitting” issue to the estimation even if the model 

is falsely specified. In such a case, previous literature proposes the ways to penalize the 

model by the number of parameters ((Andrews, 1999)). We compare the performance of 

the proposed method with the ones of those existing methods in the later section. 

Though this example may seem to be somewhat arbitrary, similar problems arise in 

many situations when econometric models are compared. Specifically, one model can be 

flexible (or even ”over flexible”) but misspecified, while the other is simpler but accurate. 

Some researchers may not value the simplicity, but they would prefer a ”correctly specified” 

model than misspecified models. For example, think of a case where economists try to 

explain wage from education and other variables, where education is endogenous and has 

to be proxied by IVs. The misspecified model includes incorrect IVs that gives bias to 

the estimate of the coefficient. Even if one model exhibits a good fit to the data, if the 
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coefficient of interest is not properly estimated, such a model does not serve well for labor 

economists. In those occasions, our algorithm serves to help researchers to find the most 

”correct” model. Our method is general enough so that any specification can be compared. 

1.3.1 Results 

First we consider the case where over-fitting is a concern as the misspecified model has 

more parameters therefore could exhibit better fit to the data. We compare our methodology 

in this case to the model selection procedures proposed by (Andrews, 1999) as well as 

simple GMM comparison as in the previous section. (Andrews, 1999) defines GMM-AIC 

and GMM-BIC criterion as 

(i)
(θiGMM-AIC: TQT T ) − 2(|c i| − p i); 

(i)
(θiGMM-BIC: TQT T ) − (|c i| − p i)lnT, 

for i = 1, 2. The procedure chooses the model that exhibits smaller value of the criterion. 

Figure 1.1 shows the empirical probability of choosing the correctly specified model by 

cross-validation. One can see that, even when the model 2 has larger number of variables, 

it chooses the model 1 with very high chance even when the data is limited. When the 

bias parameter of the model 2 α is as large as 12., it selects the first model with probability 

91.2% even when the data size is only 100 and the second model has 9 variables compared 

to 3 of the first model. 

On the other hand, model selection based on in-sample moment performs extremely 

poorly when the misspecified model has much more variables than the first model. When 

p2 = 9, even with data size 1600 the accuracy is as bad as 59.1%, only slightly above 

chance level of 50% (when α = 12.). With data size 200, it chooses the second model only 

for 15.7%, clearly indicating it is subject to over-fitting. 

Note that in our setting, GMM-AIC and GMM-BIC exhibit exactly same choice of 

models as simple GMM based selection. This is due to the unbalance of two terms in the 

criterion. In our case, the first term is typically on order of more than 105, while the second 

term is no greater than 102 . Many factors influence the magnitude of the first term, such as 
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the choice of weighting matrix or number of moment conditions. Our result suggests that 

while cross validation robustly performs in many situations, performance of GMM based 

model selection is sensitive to those settings. 

We turn to the case where the two models have the same number of parameters, while 

the second model is misspecified. As the number of parameters is the same across two 

models, note that GMM, GMM-BIC, and GMM-AIC simply choose the model with smaller 

GMM minimand. Figure 1.2 compares the performance of cross-validation algorithm and 

the GMM minimand based model selection when the second model is globally misspeci-

fied. The y-axis shows the probability that the correctly specified model is chosen by each 

algorithm. The result indicates that when overfitting is not a concern, GMM based model 

selection performs slightly better than cross validation, especially when the data is smaller. 

1.4 Nonlinear Experiment: Collusion Detection 

In this section, we demonstrate another Monte-Carlo study to show how our algo-

rithm works in a structural estimation incorporating nonlinear and non-nested models. 

Specifically, we simulate and estimate a variant of a price collusion model suggested by 

Bresnahan (1987). The goal of our model selection procedure is to detect whether the 

firms are colluded, or determining the price competitively using the share and price data. 

The underlying idea is that the prices of the products of colluded firms are determined 

to maximize the joint profit, while the competitive price should maximizes the profit of 

individual firms. Therefore, given the same (true) parameters in demand and cost function, 

the pricing pattern varies according to the collusive structure. 

A methodology to study whether collusive behavior exists within a certain industry is 

by itself an important research topic because ignoring the possibility of collusive pricing 

may lead to a biased inference of cost estimation, which could be a critical problem for 

policy implication in applications such as merger analysis. 

In the same way as the previous section, we compare the performance of CV-based 

algorithm to GMM-minimand-based algorithm based on the theory of (Rivers and Vuong, 
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2002). Note that since the number of parameters in a model does not vary across collusive 

structure, AIC or BIC adjustment does not influence the model selection criteria. We show 

that in a realistic sample size, CV performs better than in-sample comparison in many 

cases. 

The shares and prices are simulated from a standard logit demand system and static 

pricing. We simulate data assuming a certain collusive structure. Then we test if and how 

often CV algorithm can discover the assumed collusive structure. The estimation process 

is similar to (Hu et al., 2014). 

1.4.1 Model 

Assume each firm produces a single product and denote them as j = 1, ..., J . The 

markets are denoted as t = 1, ..., T . The demand is assumed to be a simple logit demand 

specification: the utility of a consumer i purchasing a product j in a market t is expressed 

as 

uijt = Xjtβ + αpjt +  jt + ijt, 

where Xjt is the observed characteristics that influence the demand and  jt is the unob-

served utility shock . Assuming ijt follows i.i.d type-I extreme value distribution, the 

share function is 

exp(Xjβ + αpjt +  jt)
Djt(pt) =  Mt,J 

j =1 exp(Xj tβ + αpj t +  j t) 

where pt = {pjt}j=1,...,J is the vectorized prices and Mt is the market size which is known 

to the researcher. For simplicity, we do not allow random-coefficients ((Berry et al., 1995)) 

as typically done in applications. 

Firms’ marginal cost is expressed as 

MCjt = Yjtγ + λjt 
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,where Yjt is the observed characteristics that affect the marginal cost, and λjt is the i.i.d 

cost shocks. The profit of each product is 

πjt(pt) = (pjt − MCjt)Djt(pt). 

We assume that colluded firms jointly maximize their net profit, sum of πjt over j in 

a group. Define Δ as a J × J matrix of price elasticity of colluded products where the 

(j, r)th element is 

Δjr = 

⎧ ⎪  

⎪⎩ 

−∂Dr 
∂pj 

if j and r are colluded 

0 otherwise. 

By solving the first order conditions, the equilibrium prices are determined to satisfy 

pt = (Δ)−1 Dt − MCt, 

where Dt and MCt are a vectorized representation of Djt(Pt) and {MCjt}j=1,..,J respec-

tively. 

1.4.2 Estimation and Model Selection 

The parameter estimation under each model follows a standard GMM procedure with 

instrumental variables. Let Z be instrumental variables that influence the price but are not 

correlated with the unobserved shocks   and λ. Given a model, the parameters are chosen 

to minimize the GMM objective defined from the moment condition 

E[ Z] = 0  

E[λZ] = 0. 

The instrumental variables Z include (i) own characteristics, (ii) square of own charac-

teristics, (iii) mean of characteristics in a market, and (iv) square of mean characteristics in 

a market. The weighting matrix is set to be W = (Z Z)−1 . 

The candidate models are represented as partitions of firms into price-colluded groups. 

For instance, if the number of firms is two (j = 1, 2), the possible models are either 
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competitive ({{1}, {2}}) or collusive ({{1, 2}}). If three firms (j=1,2,3), possible mod-

els are {{1}, {2}, {3}} (all competitive), {{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, and 

{{1, 2, 3}} (all colluded). 

1.4.3 Simulation Results 

We consider different number of observed markets, T = {25, 50, 75, 100}, realistic 

numbers for real world application3. We also vary the true value of price coefficient to 

test the performance with different difficulty of model selection. Along with the data size, 

the difficulty of model selection depends on how different the observed data would be 

across different models. In this particular example, the key difference between models is 

generated from cross price elasticity. When the cross price elasticity is low, competitive 

price and colluded price do not differ as much, which makes it harder to find the true 

model. In logit-demand, the cross price elasticity is calculated by multiplying the share of 

the two products. Thus, lower price coefficient generally makes model selection easer as it 

increases the realized share, and the cross price elasticity as a result. For each setting, we 

generate 100 synthetic dataset and perform the model selection in each. 

Table 1.1 reports the mean and standard deviation of CV score across true models and 

candidate models with the price coefficient equals to −.1 and −.3. The second column 

represents the true partition of firms, and the third to seventh are the results corresponding 

to each candidate model. The CV score of the true model is on average smaller than the 

mis-specified models in any specification. Also, the standard deviation of the score is 

smaller for the true model. Both mean and standard deviation of the true model decline in 

the number of observations. 

We report the probability that each candidate model is chosen by our algorithm in table 

1.2. In each setting, the probability to find the true model increases in the number of 

markets, which corresponds to our theoretical finding in section 2. For comparison, Table 

1.3 presents the same for GMM-minimiand comparison. 

3For instance, (Nevo, 2001) observes 94 independent markets. 
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Figure 1.3 compares the performance of our model selection to a simple in-sample 

GMM fit comparison under different price coefficient. It shows that our CV algorithm 

generally performs better than in-sample comparison. The difference is particularly large 

when the true model is partially colluded (second column). As seen in Table 1.3, GMM 

comparison tends to select all-competitive model in such a case. 

1.5 Cross-Validation Approach to MPEC Estimation 

In this section, we propose a method to apply cross-validation algorithm when estima-

tion is based on Mathematical Programming of Equilibrium Constraint (MPEC) approach 

proposed by (Su and Judd, 2012). MPEC approach formulates the estimation as an opti-

mization problem with constraints: The variables of the optimization consists of structural 

parameters as well as endogenous latent economic variables, and the constraints among the 

variables represent the equilibrium condition that the economic model requires. 

The application of the cross validation procedure to MPEC estimation is not straightfor-

ward: If parameters estimated from training data is substituted in a MPEC model with test 

data directly, the constraints would be not satisfied in general. In such a case, we cannot 

directly compare GMM objective on test data across models since we also have to consider 

the violation of constraints as indication of model misfit. 

Taking the above discussion into consideration, we propose a modified cross validation 

procedure. We differentiate the choice variables for the optimization problem into two 

categories: model variables and observation-specific variables. Model variables are specific 

to the model, therefore shared across training and test data. Observation-specific variables 

are latent variables defined on each observation. For instance, in BLP demand estimation 

example on (Dubé et al., 2012), the price elasticity is a parameter assumed to be constant 

across observations, thus treated as a model variable. Meanwhile, the unobserved utility 

shock ( jt in their notation) is defined for each datapoint, thus regarded as observation 

specific. 
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Our modification is simple. In training data, we jointly choose the model variables and 

observation-specific variables to optimize the GMM objective function with equilibrium 

constraints. In test data, we still solve a constrained optimization problem, but only with 

respect to observation-specific variables while the model variables are set to the estimates 

from training data. The algorithm is described in detail below and summarized in Algo-

rithm 2. 

1.5.1 GMM-MPEC 

We first outline the MPEC formulation of parameter estimation. Here we follow the 

notation of (Su and Judd, 2012) except that we allow some endogenous variables to be 

observation-specific. Suppose an econometric model Mi is expressed with the parame-

ter vector θ(i), a vector of endogenous variables σ(i), and endogenous variables that are 

observation-specific η(i), and the equilibrium constraint h(i)(θ(i), σ(i), η(i)) = 0. In MPEC 

formulation, each model is characterized by a set of moment conditions with equilibrium 

constraints: 

(i) (i) (i)Mi ⇒E[f (i)(vt, θ  , σ  , η  )] = 0 0 0 0 

s.t. 

(i) (i) (i)
h(i)(θ , σ  , η  ) = 0.0 0 0 

Given the observation {vt}t=1,..,T , the parameters of each model are estimated via 

MPEC: 

(i) (i) (i)
(θ , σ , η ) = argmin T T T 

(i)
Q (θ(i), σ(i), η(i))T (1.13) 

θ(i),σ(i),η(i) 

s.t. (1.14) 

h(i)(θ(i), σ(i), η(i)) = 0. (1.15) 
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where 

QT 
(i)
(θ(i), σ(i), η(i)) 

1 
T 

(i) 1 
T 

= f (i)(vt, θ
(i), σ(i), η(i)) WT f (i)(vt, θ

(i), σ(i), η(i)) . 
T T 

t=1 t=1 

(i),GMM−MPEC (i),GMMLet θT be the parameters that are solution of Eq. (1.15), and let θT 

be the solution of standard GMM (i.e., Eq. (1.1)). Moreover, let 

(i),GMM−MPEC (i)
VT (θ) = min QT (θ, σ

(i), η(i)) (1.16) 
σ(i),η(i) 

s.t. (1.17) 

h(i)(θ, σ(i), η(i)) = 0, (1.18) 

(i),GMM (i)and VT (θ) =  QT (θ). The equivalence of GMM and GMM-MPEC implies 

(i),GMM−MPEC (i),GMM
θ = θT T 

(i),GMM−MPEC (i),GMM
VT (θ) =  VT (θ). (1.19) 

1.5.2 Cross-Validation in GMM-MPEC Approach 

We split the observations in the same way as section 2. The moment on the datapoints 

S is 

QS 
(i)
(θ(i), σ(i), η(i)) 

1 
f (i)(v (i) 1 

f (i)(v= t, θ
(i), σ(i), η(i)) W t, θ

(i), σ(i), η(i)) . |NS | S |NS |
t∈NS t∈NS 

We train the model to minimize the moment under equilibrium constraint. The trained 

model is denoted as 

(i) (i) (i) (i)
(θ(i))(θ , σ  , η  ) = arg min QS S S S 

θ(i),σ(i),η(i) 

s.t. 

h(i)(θ(i), σ(i), η(i)) = 0. 
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Once the model is trained, it is validated by the rest of datapoints. Instead of simply 

evaluating the GMM objective in the validation data at the trained model parameters, 

observation-specific endogenous variables need to be chosen so that the equilibrium con-

straints are satisfied. We do so by minimizing the GMM objective subject to equilibrium 

constraints with respect to η only, while model parameters are fixed at trained value. 

Formally, 

(i)
Q = S,valid ⎧  

⎧  
⎫⎬ 

⎫⎬1 1(i) (i) (i)
, η(i)) W (i) (i)

f (i)(vt, θ  f (i)(vt, θ  , η(i))arg min , σ  , σS S S S S|N\S| |N\S |⎩ ⎩⎭ ⎭η(i) 
t∈N\S t∈N\S 

s.t. 

(i) (i)
h(i)(θS , σS , η

(i)) = 0. 

The averaged validation score of each model 

(i) 1 (i)
Q = Qvalid S,valid 

rCk
S⊂{1,2,...,r}:|S|=r−k 

is compared and the model of smaller averaged validation score is selected. 

Remark 1.5.1 (consistency of GMM-MPEC) From (1.19) and Theorem 1.2.1, the consis-

tency of GMM-MPEC with the same assumption on the moment directly follows. 

1.6 Application: Dynamic Demand and Dynamic Pricing Model on Online Retailer 

Data 

In this section, we perform our model selection procedure in a structural model with 

a real-world dataset. The models we compare are dynamic and static demand and pricing 

model that are taken from (Conlon, 2012). In particular, we first apply our cross-validation 

algorithm to test either the state-of-the-art dynamic demand model ((Gowrisankaran and 

Rysman, 2012)) or the traditional static demand model ((Berry et al., 1995)) has stronger 

explanatory power in the consumer behavior. To this aim, we use monthly sales and price 
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data of an online-retail shop. Furthermore, we consider supply side dynamics of pricing 

that takes the seasonality and consumer skimming into consideration such as (Nair, 2007): 

We investigate whether or not such a model explains the observed pricing pattern better than 

traditional static profit maximization model that is based on the consumer model selected 

in the previous step. 

Structural estimation of a dynamic model has been an important frontier in industrial 

organization, both on demand side and supply side. On demand side, dynamic model of 

consumer behavior has been widely applied by researchers recently ((Gowrisankaran and 

Rysman, 2012)). The underlying idea in the dynamic demand model is that consumers are 

forward-looking regarding the changes in the market such as price and make a dynamic 

decision by considering the future market state. Such a model is justified by the fact that 

important parameters such as price elasticity could be severely mis-estimated by ignoring 

the forward-looking behavior of consumers. Meanwhile, similar mis-estimation would 

occur if a researcher applies a dynamic model in the case the consumers are in fact myopic. 

From a market level data, it is not directly visible if consumers are forward-looking or 

myopic. 

Contrary to the demand side, dynamic pricing in supply side has a long history of 

theoretical studies dating back to (Coase, 1972). Nevertheless, little empirical attention is 

paid until recent years ((Nair, 2007)). Under certain conditions, firms have the incentive 

to determine current price by taking its effect on the future profit into consideration. For 

example, when consumers are heterogeneous in an evaluation of a product, firms are mo-

tivated to ”skim” high-evaluation consumers in earlier periods by setting a high price and 

later lower it. With myopic consumers (as in (Luo, 2015)), the pricing decision boils down 

to a dynamic programming of a firm in the case of monopoly or a dynamic game between 

firms in the case of oligopoly. If the consumers are also forward-looking, the pricing boils 

down to a dynamic game between consumers and firms as studied in (Nair, 2007). In this 

case, the observed price and demand are interpreted as a result of dynamic equilibrium. 

It is not straightforward to infer if the pricing is dynamic or not from the market 

level data. A declining tendency on the price does not always indicate that firms are 
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making pricing decision dynamically: If the consumers are heterogeneous in either product 

evaluation or price sensitivity and leave market after purchase, a myopic optimal price may 

be decreasing in periods since the remaining consumers are more price elastic. 

Applying dynamic pricing model to data generated from myopic pricing would cause 

a significant bias in the estimates of supply-side parameters such as marginal cost. For 

instance, a dynamic pricing model may interpret an observed high price in a certain period 

as a firm sparing some demand for the future, while it is a result of high marginal cost in 

truth. Therefore, estimation of supply-side model parameters such as marginal cost requires 

researchers to know if firms are myopic or forward-looking. 

As it is important to correctly specify the dynamic feature of the agent’s decision 

making both on demand and supply side, researchers are encouraged to verify whether 

the decision making is static or dynamic from the data rather than appealing to intuition, 

desirably based on real-world datasets. Regarding this aspect, we demonstrate our cross-

validation algorithm to compare two by two alternative models; dynamic or myopic con-

sumers, and dynamic or myopic firms. The models are estimated via GMM-MPEC. We 

take a simple dynamic model from (Conlon, 2012). 

We perform estimation and model selection on a dataset of price and sales of an online-

retailer based in UK. The data is taken from the University of California Irvine (UCI) 

Machine Learning Repository (henceforth, UCI). UCI repository consists of more than 300 

datasets. The data used in this study is available here at https://archive.ics.uci. 

edu/ml/datasets/Online+Retail free of charge. We consider the use of such a 

publicly available dataset increases a reproducibility of a research process. In machine 

learning field, researchers are encouraged to compare the performance of a newly proposed 

model or algorithm to old ones with a publicly available dataset, and the UCI repository is 

widely used in this aim. 

https://archive.ics.uci
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1.6.1 Models 

We consider models of 2 by 2 design: static or dynamic demand, static or dynamic 

pricing. We denote each model as m ∈ {1, 2, 3, 4}, where m = 1, 2 assume static 

demand, m = 3, 4 assume dynamic demand, m = 1, 3 assume static pricing, and m = 

2, 4 assume dynamic pricing. For simplicity, we assume that the firm and consumers 

make their purchase decision independently across products. It is entirely possible to 

test if this assumption is valid or not using our CV algorithm, but we omit it as the main 

purpose of this section is an illustration of model selection procedure. The consumers are 

heterogeneous in price sensitivity and the constant term of utility as in random coefficients 

model. We assume that consumers make a purchase at most once for each product within 

the considered period. This assumption is justified by the transaction level data. Among 

all the transactions used in the data, 75.8% of them are made by consumers who purchased 

the same product only once in the considered period. An alternative approach is to model 

repeated purchase and inventory behavior explicitly as in (Hendel and Nevo, 2006), but we 

do not take this path for tractability. 

Demand Model 

In each period, consumers in the market decide whether to purchase a product or 

not to maximize their objective function. If the demand is assumed to be static, the 

objective function is simply the utility function defined below. If the demand is dynamic, 

the objective function is the infinite-period sum of discounted utility. 

Denote products as j = 1, ..., J and period as t = 1, ..., T . Consumer i’s utility of 

purchasing a product j at period t is 

αp α0 uijt = i pjt + ij +Xjtα
x +  jt + ijt. 

≡ δijt + ijt 

where pjt is the price of a product j in period t, Xjt is the observable characteristics, and 

 jt is the i.i.d preference shock, which enters the moment conditions. ijt is the logit error 
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term that follows type-I extreme value distribution and i.i.d across periods and products. 

The utility of not purchasing is ui0t = i0t as the non-random component is normalized to 

be zero. The random coefficients follow a normal distribution. 

αp = αp + νpρp 
i i 

α0 = α0 + ν0ρ0 
i i 

,where (αp, α0) are the population mean of the utility coefficients, νi
p and νi 

0 are draws from 

a standard normal distribution, and (ρp, ρ0) are the standard deviation of the distribution of 

the random coefficients. 

In the static demand model, the consumers simply compare the utility of purchase to 

non-purchase in each period. Thus the purchase probability is 

exp(δijt)m s = ijt exp(δijt) + 1  

for m = 1, 2. 

In the dynamic demand model, the consumers make purchase decision by comparing 

the instant utility to the value of waiting until next period. Let Ωd be a state space for ijt 

a consumer i on product j at period t and Wij (Ω
c ) be a value function associated to the ijt 

state. The Bellman equation is expressed as 

Wij (Ω
d 

ijt+1)|Ωd 
ijt) = max{uijt, ui0t + βE[Wij (Ω

d 
ijt]}. 

The purchase probability of product j of a consumer i at period t is 

exp(δijt)m sijt(Ω
d ) =ijt exp(δijt) + exp(βE[W (Ωc ])ijt+1)|Ωc 

ijt 

for m = 3, 4. 

Following (Conlon, 2012), we make an assumption that consumers have perfect fore-

sight over a transition of state Ωd 
ijt. Formally, 

E[W (Ωd 
ijt] =  wijt+1,ijt+1)|Ωd 
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where 

wit = ln(exp(δijt) + exp(βwit+1)) 

for all i, j, and t. The second line is a direct consequence of the first line following the 

argument of (Rust, 1987). An alternative and more popular specification is to assume that 

consumers form an expectation of the future state by certain functional form, typically 

an AR(1) regression. Compared to functional assumption perfect foresight reduces the 

computational burden significantly as it avoids integration over a distribution for calculat-

ing expectation (See (Conlon, 2012) for further discussion.) Also, note that by our CV 

algorithm we can even investigate which of perfect foresight and AR(1) assumption makes 

the model more accurate, which we believe is an interesting future work. 

Finally, for both static and dynamic model let Mijt be the market size of consumers for 

a product j at period t. Given the consumers purchase the same product at most once, the 

market size transition for any model m ∈ {1, 2, 3, 4} follows 

(m) (m)
Mijt+1 = Mijt(1 − s ).ijt 

Supply Model 

We express the marginal cost of product j at period t for the retailer as MCjt where 

MCjt = Yjt jt + λjt. 

Xcost 
jt is the observable characteristics of the product, and λjt is the cost shock i.i.d across 

time and products. 

Denote the states of a product j for the retailer at period t as Ωs
jt. Ωt

s includes the 

market size of each consumer segment {Mijt}i and the draw of unobserved utility shock, 

{ ijt}i and λjt. Given the demand system described above, the demand function is written 

as 

R 
(m) (m) (m)

Djt (pjt,Ωt
s) =  Mijt sijt . 

r=1 
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The instant profit function of a product j at period t is therefore 

πjt(pjt, Ω
s
jt) = Djt(pjt,Ω

s
jt)(pjt − MCjt), 

In static pricing model, m = 1, 3, the retailer simply chooses the price to maximize the 

myopic profit: 

p mjt = argmax πjt(pjt)∀j, t 
pjt 

for m = 1, 3. 

In dynamic pricing model (m = 2, 4), the retailer maximizes the net profit over time 

with discounting. The discounting factor β is assumed to be same with consumers. The 

retailer determines the price after observing the realization of the shocks, { ijt}i and λjt. 

The value function of a product j is expressed as 

s sVj(Ωt) = E max πjt + βVj(Ωt+1) Ωf
t , pjt , 

pjt 

where the expectation is over the unobserved cost shock in the next period, λjt+1. The 

optimal price is determined as 

m s s pjt = argmax πjt(pjt) + βE[Vj(Ωt+1)|Ωt ] 
pjt 

for m = 2, 4. 

Similar to the demand side, we assume that the retailer has a perfect information on the 

transition of the error draw. 

Equilibrium 

This section describe the equilibrium condition for each model. When consumers and 

firms are both static (m = 1), the equilibrium price and demand are the standard one 

as in many models such as (Berry et al., 1995). When consumers are static but firms are 

dynamic (m = 2), pricing can be seen as a single agent dynamic optimization problem with 

continuous choice variable pjt. Similarly, when consumers are dynamic but firms are static 
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(m = 3), consumers solve a single agent dynamic optimization problem. The consumers 

problem is an optimal stopping problem as the choice is the timing of purchase. When 

both consumers and the retailer are both dynamic (m = 4), we assume their behavior is at 

Markov Perfect Nash Equilibrium (MPNE) where consumers’ and retailer’s prediction of 

the value function matches to the realization. 

1.6.2 Data 

We obtain our data from UCI machine Learning Repository. The UCI Machine Learn-

ing Repository maintains more than three hundreds datasets that are intensely used by 

machine learning community for empirical investigation and comparison of algorithms. 

When researchers propose a new model or algorithm in machine learning field, a common 

practice is to test its performance on the dataset in this repository. Such a culture gives a 

thorough idea on the practical performance of existing models and algorithms. Moreover, 

it helps a new researcher replicate the results on the existing papers. 

The dataset we utilize in this study is the online retail data created by (Chen et al., 2012), 

posted on UCI Machine Learning Repository in November 2015. The data is publicly avail-

able at https://archive.ics.uci.edu/ml/datasets/Online+Retail. The 

information about the data source is provided by the authors as follows: ”The online 

retailer under consideration is a UK-based and registered non-store business with some 

80 members of staff. The company was established in 1981 mainly selling unique all-

occasion gifts. For years in the past, the merchant relied heavily on direct mailing catalogs, 

and orders taken over phone calls. It was only 2 years ago that the company launched its 

own web site and shifted completely to the web. Since then the company has maintained a 

steady and healthy number of customers. The company also uses Amazon.co.uk to market 

and sell its products.” 

The data include all the transactions occurred on this retailer from December 2010 to 

December 2011. Each transaction information includes quantity, unit price, consumer ID, 

and country. We dropped any sales to outside UK. The majority of the sales is inside UK 

https://Amazon.co.uk
https://archive.ics.uci.edu/ml/datasets/Online+Retail
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and non-UK sales has only limited amount (approximately 20%.) Since our purpose is to 

demonstrate application of CV model selection to static and dynamic models, we aggregate 

the data into a monthly sales of each product so that the data format follows typical market 

level data and we can apply commonly used economic models. The monthly sales is simply 

a sum of the quantity sold in a particular month. The monthly price is calculated as the 

average of the price of transaction occurred in each month weighted by the quantity. We 

omitted the products that have any zero sales in the considered months from the data. 

On the top of price and sales data, the author hand-coded product category and subcat-

egory based on the description of products. The categories include Children, Decoration, 

or Kitchen. The number of products as well as basic statistics are summarized in table 1.4. 

Figure 1.4 shows the average of monthly price and quantity sold in each category. It shows 

that the dynamics is heterogeneous across categories. For instance, the price of products 

in Gift and Decoration show tendency to decline over periods, while Home and Garden or 

Candle show more fluctuation. 

1.6.3 Estimation and Model Selection 

We implement model selection for the demand side and supply side sequentially. First 

we test if the demand is static or dynamic. Subsequently, we test if the pricing is static 

or dynamic, assuming the demand model chosen in the previous step. The endogenous 

variables such as the market size Mijt and the share sijt are estimated in the demand side, 

and imported over to the supply side estimation. Importantly, we do not have to specify the 

pricing model on estimation of demand side by virtue of perfect foresight assumption. We 

treat the data in each category independently. 

We adapt 3-fold cross validation, (k, r) = (1, 3). Because the data has a panel structure 

of products and periods, either the product-wise or period-wise split is possible. We adopt 

split based on products. That is, we split the products into three groups, and use two of 

them to estimate a model and use the last one for validation. 



�

�

35 

MPEC formulation 

To estimate each model by GMM-MPEC, we formulate the estimation as a minimiza-

tion problem of GMM objective with equilibrium constraints based on the model described 

above. Under the assumptions we impose, the equilibrium constraints are convex and 

mostly either linear or quadratic. This fact ensures that we are able to find an optimal 

solution of the estimation problem. 

First we describe the MPEC formulation of demand models. For the static demand 

model (m = 1, 2), the set of constraints are 

exp(δijt)m s = ijt exp(δijt) + 1  

Dm Mm m = jt ijtsijt 
i 

δijt = αpi pjt + αij 
0 + Xjtα

x +  jt (1.20) 

αp = αp + νpρp 
i i 

α0 = α0 + ν0ρ0 
i i 

Mm = Mm m ),ijt ijt−1(1 − sijt 

for all (i, j, t). 

For dynamic demand model, the constraints are similar except the consumers compare 

the purchase utility to the value of waiting until next period. 

exp(δijt)m s = ijt exp(δijt) + exp(βwit+1) 

wit = ln(exp(δit) + exp(βwit+1)) 

= Mm mDjt ijtsijt 
i 

(1.21)
δijt = αi

ppjt + α0 
ij + Xjtα

x +  jt 

αp = αp + νpρp 
i i 

α0 = α0 + νi 
0ρ0 

i 

Mm = Mm m 
ijt ijt−1(1 − sijt) 

for all (i, j, t). 
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The model parameters to estimate are θd = (αp, α0, ρp, ρ0). The data to input are 

the realized demand Djt, the observed price pjt, and the random draws νp and ν0 Thei i . 

predicted share sijt, the market size of each consumer type Mijt, and the error draw  jt are 

the endogenous variables. In the dynamic demand model, the value function wijt is also 

observation-specific endogenous variable to choose for the optimization. 

We define the supply side estimation problem by the first order condition and the 

Bellman equation. By abusing notation, let Djt
m(p) as a demand function with respect 

to price in model m. The supply side equilibrium constraints of static pricing model is that 

the observed prices are chosen to maximize the instant profit: 

Dm Mm = jt ijtsijt 
i 

(1.22)MCjt
m = Xjt

s γ + λjt 

pjt = arg  max[Djt
m(p)(p − MCjt

m)] 
p 

for all (i, j, t). 

Instead of the third line above, the dynamic pricing model includes Bellman equation: 

Dm Mm = jt ijtsijt 
i 

= XsMCjt jtγ + λjt 
(1.23) 

pjt = arg  max[Djt
m(p)(p − MCjt) +  βVjt+1(Ωjt

s 
+1)] 

p 

Vjt(Ω
s
jt) = max[Djt

m(p)(p − MCjt) +  βVjt+1(Ω
s
jt+1)]. 

p 

The model parameters to estimate is θs = γ. MCjt, λjt, and the value function are 

observation-specific endogenous variables. Mijt and sijt are estimated in the demand side 

as endogenous variables. 

In both static and dynamic model, the constraint includes the retailer’s optimization 

problem. We convert it to the first order condition when solving for the estimation. The 

details are in the Appendix. 
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The GMM objective is a function defined by moment conditions 

E[ Z] = 0  

E[λZ] = 0, 

where Z is the instrumental variables. It includes category and subcategory dummies, 

period dummy, and the market size of consumer segments {Mit}i. The market size infor-

mation is correlated with price because it relates to the price elasticity. Since we assume 

that the unobserved shocks are not serially correlated, the market size at period t is not 

correlated with the shocks in the same period. Further detail of the setting for estimation is 

described in the Appendix. 

1.6.4 Results 

Table 1.5 presents the cross validation score of each model. The second from the last 

column shows the demand model selected by CV. The last column exhibits the selected 

pricing model. One can see that the selected model varies across categories. On demand 

side, the data on Children Decoration, and  Kitchen are explained better by the static model, 

while the dynamic model is preferred on other categories. On supply side, static pricing 

explained the data of Crafts, Decoration, and Personal Item better. 

The result of model selection is difficult to interpret. One could try to provide some 

intuition: For instance, the products that fits static demand model better may be the ones 

that consumers cannot make a consumption plan. On products where the retailer engages in 

static pricing, it may be due to certain circumstance that researchers do not observe, such as 

a contract with wholesaler or limitation of inventory. However, prior to observing the result 

of cross validation, it is hard to make an reliable and scientific argument and justification 

for any model to be realistic. 

The difficulty of interpretation in turn suggests that it is impractical for researchers to 

assume a certain model beforehand. Selecting a structural model based on intuition may 

severely bias the inference. To see the problem, 1.6 shows the estimated price coefficient 

in each category in different specification. While in some cases two models exhibit fairly 
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similar result, in some cases such as Candle or Party the result is largely different. There-

fore, we recommend that researchers cross validate their models whenever possible, unless 

they have a strong reason to believe in certain model. 

1.7 Conclusion 

In this paper, we have proposed a cross-validation approach to model selection when 

models are estimated via GMM criterion. Cross-validation procedure can be readily im-

plemented in any existing economic models without much extra work for researchers. 

We have proved its asymptotic consistency, and Monte-Carlo experiments in both linear 

and non-linear model confirm that cross-validation outperforms in-sample comparison that 

economists traditionally practice. 

We also proposed a way to apply cross-validation when models are estimated through 

MPEC. As its real-world application, we adapt our CV based model selection to test 

dynamic demand model and dynamic pricing model in an online-retailer data. We find a 

quite diverse result across product categories. Unexpectedly, even on the same retailer it is 

not consistent whether a dynamic model is preferred or not. As the implication of structural 

estimation largely depends on the assumed model, this result suggests that economists 

should cross-validate their structural models rather than appealing to for reliability of their 

inference. 
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Algorithm 1 (k, r)-Cross Validation on GMM 

1: Input: Models {Mi}, data {vt}t=1,...,T . 

2: for each model Mi do 

3: for each training data {vt}t∈NS do 

4: Estimate model parameters as 

(i)
θS 

(i)
(θ(i))= arg min QS 

θ(i)∈Θ(i) 

5: 
(i) (i)Calculate the score Q )S,valid(θS 

6: end for 

7: Calculate the average score 

(i) 1 (i) (i)
Q = Q S )valid S,valid(θ 

rCk
S⊂{1,2,...,r}:|S|=r−k 

8: end for 
(i)

9: Find the best model that exhibits the smallest Qvalid . 
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(a) p1 = 3,p2 = 5,α = 3. (b) p1 = 3,p2 = 5,α = 7. 

(c) p1 = 3,p2 = 9, α = 3. (d) p1 = 3,p2 = 9, α = 7. 

Figure 1.1.: The accuracy of model selection when p1 < p2 . 

Note: The y-axis is the probability that the correctly specified model (model 1) is chosen by 

each procedure. The number of instruments is set to be c1 = c2 = 10. The cross-validation 

is 2-folds, i.e. r = 2. The weighting matrix is set to be identity matrix. 
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(a) p1 = p2 = 3,α = 7. (b) p1 = p2 = 3,α = 12. 

(c) p1 = p2 = 7, α = 7. (d) p1 = p2 = 7, α = 12. 

Figure 1.2.: The accuracy of model selection when p1 = p2 . 

Note: The y-axis is the probability that the correctly specified model (model 1) is chosen by 

each procedure. The number of instruments is set to be c1 = c2 = 10. The cross-validation 

is 2-folds, i.e. r = 2. The weighting matrix is set to be identity matrix. 



42 

Table 1.1.: The validation Score of CV. Average of 100 iterations (standard deviation in the 

bracket). 

  = −.1 

Candidate Model 

Number of Market 

25 

True Model 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

1.175 

(1.570) 

41.026 

(61.458) 

25.441 

(26.184) 

{1, 2}{3} 

23.732 

(44.224) 

1.022 

(1.049) 

10.115 

(17.287) 

{1}{2, 3} 

28.822 

(89.920) 

27.687 

(54.927) 

8.536 

(9.610) 

{1, 3}{2} 

28.799 

(56.014) 

22.208 

(29.543) 

8.659 

(8.646) 

{1}{2}{3} 

30.709 

(60.764) 

8.799 

(13.536) 

0.912 

(1.021) 

50 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.233 

(0.181) 

9.890 

(11.450) 

10.050 

(10.486) 

6.892 

(10.774) 

0.314 

(0.207) 

2.552 

(2.366) 

6.505 

(5.495) 

5.328 

(3.391) 

3.764 

(10.730) 

5.708 

(5.073) 

6.143 

(5.696) 

2.808 

(2.180) 

6.686 

(7.486) 

2.466 

(1.781) 

0.274 

(0.215) 

75 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.144 

(0.094) 

5.736 

(4.349) 

6.651 

(5.723) 

3.436 

(2.328) 

0.170 

(0.114) 

1.710 

(1.334) 

3.470 

(2.232) 

3.284 

(2.456) 

1.800 

(1.082) 

3.272 

(1.865) 

3.315 

(1.864) 

2.046 

(3.060) 

3.580 

(2.415) 

1.367 

(0.867) 

0.190 

(0.152) 

100 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.084 

(0.046) 

4.050 

(3.121) 

4.463 

(2.282) 

2.314 

(1.195) 

0.124 

(0.071) 

1.314 

(1.761) 

2.475 

(1.716) 

2.289 

(1.754) 

1.266 

(0.791) 

2.371 

(1.418) 

2.384 

(1.785) 

1.357 

(1.017) 

2.374 

(1.424) 

0.951 

(0.671) 

0.124 

(0.081) 

  = −.3 

25 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

1.139 

(2.269) 

8.223 

(13.529) 

10.684 

(16.949) 

2.531 

(3.149) 

1.174 

(1.405) 

3.272 

(4.735) 

2.355 

(3.209) 

3.528 

(3.663) 

3.175 

(3.757) 

1.906 

(2.087) 

4.746 

(8.142) 

4.273 

(9.404) 

1.704 

(1.771) 

1.646 

(2.184) 

1.190 

(1.373) 

50 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.281 

(0.256) 

1.713 

(1.448) 

3.628 

(15.427) 

0.651 

(0.439) 

0.319 

(0.229) 

0.998 

(1.742) 

0.661 

(0.442) 

0.970 

(0.742) 

1.056 

(2.198) 

0.640 

(0.416) 

1.165 

(0.947) 

1.041 

(1.949) 

0.643 

(0.461) 

0.396 

(0.278) 

0.365 

(0.607) 

75 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.159 

(0.110) 

1.096 

(0.684) 

1.303 

(1.023) 

0.387 

(0.233) 

0.210 

(0.164) 

0.504 

(0.336) 

0.387 

(0.257) 

0.623 

(0.370) 

0.467 

(0.288) 

0.426 

(0.431) 

0.574 

(0.384) 

0.464 

(0.322) 

0.356 

(0.214) 

0.238 

(0.150) 

0.169 

(0.117) 

100 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

0.103 

(0.060) 

0.743 

(0.393) 

0.937 

(0.464) 

0.261 

(0.134) 

0.134 

(0.079) 

0.317 

(0.170) 

0.255 

(0.135) 

0.419 

(0.244) 

0.335 

(0.243) 

0.277 

(0.165) 

0.414 

(0.246) 

0.329 

(0.253) 

0.258 

(0.124) 

0.157 

(0.094) 

0.108 

(0.068) 
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Table 1.2.: The Model Selection Probability with CV. 

  = −.1 

25 

True Model 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

0.99 

0.00 

0.00 

{1, 2}{3} 

0.00 

0.95 

0.01 

{1, 3}{2} 

0.00 

0.00 

0.00 

{1}{2, 3} 

0.01 

0.00 

0.00 

{1}{2}{3} 

0.00 

0.05 

0.99 

true 

0.99 

0.95 

0.99 

50 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

1.00 

0.00 

0.00 

0.00 

0.99 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

1.00 

1.00 

0.99 

1.00 

75 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

1.00 

0.00 

0.00 

0.00 

1.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

100 

{1, 2, 3} 

{1, 2}{3} 

{1}{2}{3} 

1.00 

0.00 

0.00 

0.00 

1.00 

0.00 

  = −.3 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

Number of Market 

{1, 2, 3} 

25 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

50 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

75 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

100 {1, 2}{3} 

{1}{2}{3} 

Candidate Model 

0.62 

0.00 

0.00 

0.04 

0.62 

0.07 

0.04 

0.01 

0.05 

0.11 

0.03 

0.09 

0.19 

0.34 

0.79 

0.77 

0.00 

0.00 

0.05 

0.64 

0.01 

0.04 

0.01 

0.04 

0.10 

0.00 

0.04 

0.04 

0.35 

0.91 

0.78 

0.00 

0.00 

0.05 

0.57 

0.05 

0.07 

0.02 

0.01 

0.06 

0.00 

0.03 

0.04 

0.41 

0.91 

0.82 

0.00 

0.00 

0.04 

0.64 

0.04 

0.09 

0.00 

0.02 

0.02 

0.00 

0.01 

0.03 

0.36 

0.93 

0.62 

0.62 

0.79 

0.77 

0.64 

0.91 

0.78 

0.57 

0.91 

0.82 

0.64 

0.93 



44 

Table 1.3.: The Model Selection Probability with GMM. 

  = −.1 

true 

0.99 

0.95 

0.95 

1.00 

0.92 

0.97 

1.00 

0.97 

1.00 

1.00 

0.96 

0.99 

Number of Market True Model 

{1, 2, 3} 

25 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

50 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

75 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

100 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

25 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

50 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

75 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

100 {1, 2}{3} 

{1}{2}{3} 

{1, 2, 3} 

0.99 

0.00 

0.00 

1.00 

0.00 

0.00 

1.00 

0.00 

0.00 

1.00 

0.00 

0.00 

Candidate Model 

{1, 2}{3} {1, 3}{2} {1}{2, 3} {1}{2}{3} 

0.01 0.00 0.00 0.00 

0.95 0.00 0.00 0.05 

0.02 0.01 0.02 0.95 

0.00 0.00 0.00 0.00 

0.92 0.02 0.00 0.06 

0.00 0.00 0.03 0.97 

0.00 0.00 0.00 0.00 

0.97 0.00 0.00 0.03 

0.00 0.00 0.00 1.00 

0.00 0.00 0.00 0.00 

0.96 0.00 0.00 0.04 

0.01 0.00 0.00 0.99 

  = −.3 

0.61 0.10 0.09 0.09 0.11 

0.00 0.66 0.00 0.02 0.32 

0.00 0.06 0.05 0.05 0.84 

0.69 0.10 0.13 0.07 0.01 

0.01 0.54 0.01 0.03 0.41 

0.00 0.02 0.04 0.05 0.89 

0.77 0.09 0.07 0.06 0.01 

0.00 0.44 0.00 0.00 0.56 

0.00 0.03 0.00 0.06 0.91 

0.77 0.05 0.11 0.06 0.01 

0.00 0.39 0.01 0.01 0.59 

0.00 0.01 0.00 0.02 0.97 

0.61 

0.66 

0.84 

0.69 

0.54 

0.89 

0.77 

0.44 

0.91 

0.77 

0.39 

0.97 
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Figure 1.3.: The choice probability of true model on CV and GMM model selection. 
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Algorithm 2 (k, r)-Cross Validation on GMM-MPEC 

1: Input: Models {Mi}, data {vt}t=1,...,T . 

2: for each model Mi do 

3: for each training data {vt}t∈NS do 

4: Estimate model parameters as 

(i) (i) (i)
(θ , σ , η ) = S S S arg min (i)

Q (θ(i), σ(i), η(i))S 
θ(i),σ(i),η(i) 

s.t. h(θ(i), σ(i), η(i)) = 0. 

5: Calculate the score as 

(i) (i) (i) (i)
Q ) = min Q\S (θ , σ , η(i))S,valid(θS S S 

η(i) 

(i) (i)s.t. h(θ , σ , η(i)) = 0.S S 

6: end for 

7: Calculate the average score 

(i) 1 (i) (i)
Q = Q S )valid S,valid(θ 

rCk
S⊂{1,2,...,r}:|S|=r−k 

8: end for 
(i)

9: Find the best model that exhibits the smallest Qvalid . 
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Category 

Candle 

Children 

Crafts 

Decoration 

Gift 

Home and Garden 

Kitchen 

Party 

Personal 

Table 1.4.: Summary of Online-Retail Data 

Example of Products # Products 
Ave. Unit Price 

(USD) 

Ave. Monthly Sales 

(Thousand) 

Candles, Candle Holder, Candle Plate 77 1.944 0.232 

Baby Bib, Doll, Stationery Set 175 4.122 0.148 

Knitting, Patches, Flannel, Sketchbook 38 2.694 0.214 

Photo frame, Flower, Decorative Signs 153 2.454 0.1954 

Gift boxes, Tape, Message cards 65 0.7881 0.207 

Lamp,Cushion,Bath Salt 199 4.342 0.196 

Mug, Tea Set, Lunch box 247 3.352 0.189 

Balloons,Napkins, Paper cup 75 2.432 0.197 

Umbrella, Ring, Shopping bag 109 2.864 0.159 

Figure 1.4.: The price and quantity dynamics of online retail data in each category. 
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Table 1.5.: CV score in different categories 

Demand Pricing 

Category Static Dynamic Static Dynamic 

Candle 

Children 

Crafts 

Decoration 

Gift 

Home and Garden 

Kitchen 

Party 

Personal Item 

.00683 .00651 

.00913 17.9 

.00847 .00655 

.00162 .00163 

.00328 .00277 

.00177 .00109 

.00152 .00158 

.00795 .00310 

.00305 .00193 

.015302 .011402 

.982 .376887 

.003628 .004258 

.000454 .000644 

.000288 .000119 

.053322 0.022654 

.002165 .000763 

.016513 .002486 

.003356 0.003443 

Selected Model 

Demand Pricing 

Dyn Dyn 

Stat Dyn 

Dyn Stat 

Stat Stat 

Dyn Dyn 

Dyn Dyn 

Stat Dyn 

Dyn Dyn 

Dyn Stat 

Table 1.6.: Estimated price coefficient in different categories 

Category Static model Dynamic model 

Candle -6.52515 -1.71062 

Children -0.01343 -0.01835 

Crafts -2.12241 -0.66246 

Decoration -1.26782 -0.83267 

Gift -3.28775 -3.42115 

Home and Garden -0.1841 -0.4384 

Kitchen -0.56447 -0.53658 

Party -5.37787 -1.18728 

Personal Item -0.78579 -0.83831 
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2. TWO-STAGE ALGORITHM FOR DISCRIMINATION-FREE 

MACHINE LEARNING 

2.1 Introduction 

Algorithmic decision making process based on machine learning now affects many as-

pects of our lives. Emails are spam-filtered by classifiers, images are automatically tagged 

and sorted, and news articles are clustered and ranked. These days, even decisions regard-

ing individual people are being made algorithmically. For example, computer-generated 

credit scores are popular in many countries, and job interviewees are sometimes evaluated 

by assessment algorithms1. However, a potential loss of transparency, accountability, and 

fairness arises when decision making is conducted on the basis of past data. For example, 

if a dataset indicates that specific groups based on sensitive variables (e.g., gender, race, 

and religion) are of higher risk in receiving loans, direct application of machine learning 

algorithm would highly likely result in loan applicants on those groups being rejected. 

This could be viewed as an algorithmic version of statistical discrimination. Statis-

tical discrimination has been an important problem for economists both theoretically and 

empirically ((Coate and Loury, 1993);(Arrow, 1998);(Altonji and Pierret, 2001);(Fang and 

Moro, 2011)). In the upcoming big data era, this problem could arise severer than ever. 

When decision is made from many variables, the difficulty is that removing the sensitive 

variable from the dataset is not a sufficient solution. This problem is long known as 

disparate impact, a notion that was born in the 1970s. The U.S. Supreme Court ruled 

that the hiring decision at the center of the Griggs v. Duke Power Co. case 2 was illegal 

because it disadvantaged an application of to a certain race, even though the decision was 

not explicitly determined based on the basis of race. Duke Power Co. was subsequently 

1https://www.hirevue.com/ 
2Griggs v. Duke Power Co. 401 U.S. 424 (1971). 

https://1https://www.hirevue.com
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forced to stop using test scores and diplomas, which are highly correlated with race, in its 

hiring decisions. 

The issue of disparate impact is particularly critical when big data is available. Machine 

learning algorithms utilize thousands of variables, each of which may be correlated with 

the sensitive variable to some extent. As a result, information of the sensitive variable can 

be easily recovered even if the variable itself is not included in the input of the machine. 

Moreover, it is extremely difficult for human to check the influence of variables on the 

prediction. Unlike the case of Duke Power Co., it is impossible for a human judge to de-

termine discriminative effect of each variable one by one. As a result, we may statistically 

discriminate a certain group even without noticing it. 

The potential economic impact of statistical discrimination can be extremely consider-

ing how rapidly algorithmic decision making is prevailing in economic situations. Given 

the importance of the problem, it is desirable to invent a methodology to eliminate disparate 

impact from algorithmic decision makings. To do so, it requires an algorithmic approach 

since achieving it manually is impossible. 

In this paper, we propose a new fair algorithm that prevents disparate impact inspired 

by two-stage least square regression. Though some literature have studied disparate impact 

in the context of fairness-aware machine learning, there are three major limitations on the 

existing algorithms intended to alleviate disparate impact:3 

• Most of the existing algorithms are built for classification tasks and cannot deal with 

regression tasks. While classification is very important, there are tasks that require 

continuous target variables, such as salaries quoted in a job offer and penalties of 

criminals. Unfortunately, only a few algorithms such as (Calders et al., 2013; Berk 

et al., 2017a) are able to handle regression. 

• Existing algorithms cannot deal with numerical (continuous) sensitive variables. Al-

though most sensitive variables, such as gender, race, and religions are binary or 

categorical (polyvalent), some sensitive variables are naturally dealt with in terms 

3More detailed discussion of existing algorithms is in Appendix. 
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of numerical values. For example, the Age Discrimination Act 4 in the U.S. pro-

hibits discrimination in hiring, promotion, and compensation on the basis of age for 

workers age 40 or above; here, age is a sensitive variable that is naturally dealt with 

numerically. 

• Direct application of a fair algorithm could lead to reverse discrimination. To see this, 

let us take the example of income prediction in the Adult dataset5((Zliobaite et al., 

2011)). In the Adult dataset , women on average have lower incomes than men. 

However, women in the dataset work fewer hours than men per week on average. 

A fairness-aware classifier built on the top of this dataset, which equalizes the wage 

prediction of women and men, leads to a reverse discrimination that makes the salary-

per-hour of men smaller than that of women. Such discrimination can be avoided by 

introducing explanatory variables and this allows us to make a difference on the basis 

of the explanatory variables. In fact, as in the case of Griggs v. Duke Power Co., 

promoting decisions that cause disparate impacts is not allowed because they are not 

based on a reasonable measure of job performance, which implies (in some cases) 

decisions can be fair if they are of reasonable explanatory variables. Unfortunately, 

most of the existing studies cannot utilize explanatory variables. 

Inspired by the econometrics literature, we propose a two-stage discrimination remover 

(2SDR) algorithm (Section 2.3). The algorithm consists of two stages. The first removes 

disparate impact, and the second is for prediction. The first stage can be considered to be a 

data transformation that makes the linear classifiers of the second stage fair. 

We showed that 2SDR is a fair algorithm that (i) performs quite well in not only 

regression tasks but also classification tasks and (ii) is able to utilize explanatory variables 

to improve estimation accuracy. Moreover (iii), it reduces discrimination bias in numeric 

sensitive variables, which enables us to avoid other classes of discrimination, such as age 

discrimination (Center., 1975). 
4The United States Civil Rights Center (1975). 
5https://archive.ics.uci.edu/ml/machine-learning-databases/adult/ 

https://5https://archive.ics.uci.edu/ml/machine-learning-databases/adult
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Section 2.2 defines the problem of the prediction with potential discrimination. Section 

2.3 introduces our 2SDR algorithm. Theoretical property of 2SDR is analyzed in Section 

2.4. We verified the practical utility of 2SDR by using real-world datasets in Section 2.5. 

Section 2.6 concludes the paper. 

2.2 Problem 

Each vector in this paper is a column vector and is identified as a d × 1 matrix where 

d is the dimension of the vector. Let n be the number of datapoints. The i-th datapoint is 

comprised of a tuple (si, xi, zi, yi), where 

• si ∈ R
ds is the ”sensitive” variables of ds dimensions that requires special care (e.g., 

sex, race, and age). 

• xi ∈ R
dx is the normal non-sensitive variables of dx dimensions. The difficulty in 

fairness-aware machine learning is that xi is correlated with si and requires to be 

”fairness adjusted”. 

• zi ∈ Rdz is the set of explanatory variables of dz dimensions that either are not 

independent of si, or not to be adjusted for other reasons. Note that zi can be blank 

(i.e., dz = 0) when no explanatory variable is categorized in. 

• yi is the target variable to predict. In the case of classification, yi ∈ {0, 1}, whereas 

in the case of regression, yi ∈ R. 

Note that, unlike most existing algorithms, we allow si to be continuous. 

Unlike economic research, the goal of machine learning is to provide a prediction. 

We try to find a function ŷ(s, x, z) that calculates an estimate of y from the observed data 

s, x, z. 

First, we estimate a function ŷ(s, x, z) using the training data. The objective is given a data 

(s, x, z) out of the training data, the prediction ŷ(s, x, z) 

ŷ(s, x, z) is also supposed to comply with some fairness criteria, which we discuss in the 

next section. 
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A fairness-aware algorithm outputs ŷ(s, x, z), which is an estimator of y that complies 

with some fairness criteria, which we discuss in the next section. We also use Y ∈ 

R
n×1 , X ∈ Rn×dx , Z ∈ Rn×dz , S ∈ Rn×ds to denote a sequence of n datapoints. Namely, 

the i-th rows of S, X, Z, and Y are si , xi , zi , and yi , respectively. 

2.2.1 Fairness criteria 

This section discusses fairness criteria that a fairness-aware algorithm is expected to 

comply with. We consider group-level fairness in the sense of preventing disparate impact 

((Commission., 1979)), which benefits some group disproportionally. For ease of discus-

sion, we assume ds = 1 and s is a binary6 or real single variable. Note that our method 

(Section 2.3) is capable of dealing with (i) multiple sensitive variables, (ii) continuous 

s. Let (s, x, z, y) be a sample from the target dataset to make a prediction. Let ŷ = 

ŷ(s, x, z) be an estimate of y that an algorithm outputs. For binary s and ŷ, the P%-rule 

((Commission., 1979; Zafar et al., 2017b)) is defined as (
P[ŷ = 1|s = 1]  P[ŷ = 1|s = 0]  p

min , ≥ . (2.1) 
p P[ŷ = 1|s = 0]  P[y = 1|s = 1]  100 

The rule states that each group has a positive probability at least p% of the other group. 

The 100%-rule implies perfect removal of disparate impact on group-level fairness, and a 

large value of p is preferred. 

For binary s and continuous ŷ, an natural measure that corresponds to the p%-rule is 

the mean distance (MD) (Calders et al., 2013), which is defined as: 

|E[ŷ|s = 1]− E[ŷ|s = 0]| , (2.2) 

which is a non-negative real value, and a MD value close to zero implies no correlation 

between s and y. Moreover, Calders et al. (Calders et al., 2013) introduced the area under 

the receiver operation characteristic curve (AUC) between ŷ and s: 

i∈{1,2,...,n}:si=1 j∈{1,2,...,n}:sj =0 I[ŷi > ŷj ] 
, (2.3) 

ns=1 × ns=0 

6Although there are several possible definitions, it is not very difficult to extend a fairness measure of binary 
s to one of a categorical s. 
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where I[x] is 1 if x is true and 0 otherwise, and ns=1 (resp. ns=0) is the number of datapoints 

with s = 1  (resp. s = 0), respectively. The AUC takes value in [0, 1] and is equal to 0.5 if 

s shows no predictable effect on y. 

Moreover, for continuous s, we use the correlation coefficient (CC) |Covsŷ| between 

s and ŷ  as a fairness measure. Note that, when s is binary, the correlation is essentially 

equivalent to MD (Eq. (2.2) up to a normalization factor. 

2.3 Proposed Algorithm 

Here, we start by reviewing the idea of the two-stage least squares (2SLS), a debiasing 

method that is widely used in statistics, econometrics, and many branches of natural science 

(Section 2.3.1). Inspired by 2SLS, we describe the two-stage discrimination remover 

(2SDR) for fairness-aware classification and regression (Section 2.3.2). Section 2.3.3 

compares 2SDR with existing data preprocessing methods. 

2.3.1 Two-stage least squares (2SLS) 

Consider a linear regression model 

yi = xi β + i, 

where the goal is to predict yi ∈ R from variables xi ∈ Rdx . If the noise i is uncorrelated 

with xi, an ordinary least square β̂OLS = (X X)−1X Y consistently estimates β. How-

ever, the consistent property is lost when xi is correlated with : Namely, it is well-known 

((Wooldridge, 2013)) that, under mild assumption 

p Covx�
β̂OLS → β + ,

σx 
2 

where Covx� is the covariance between x and . σx 
2 is the variance of xi, and the arrow 

→p 
indicates a convergence in probability. To remove the bias term, one can utilize a set of 
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additional variables zi that are (i) independent of i, and (ii) correlate with xi. The crux of 

2SLS is to project the columns of X in the column space of Z: 

X̂ = Z(Z Z)−1Z X 

β̂2SLS = (X̂ X̂)−1X̂ Y. (2.4) 

Unlike the OLS estimator, the 2SLS estimator consistently estimates β. That is, 

β̂2SLS →p 
β. 

Note that the exogenous control variables are included both in X and Z if they exist. 

2.3.2 Proposed algorithm: 2SDR 

The idea of our algorithm is inspired by 2SLS described above. Intuitively, in the 

first stage of 2SLS, the variation of X̂ represents the variation of X that is explained by 

the instrumental variables Z. Meanwhile, the residual of the first stage, X − X̂ , should 

capture all the variation of X that is orthogonal to Z. Now if we replace Z with sensitive 

variables S, the residual still contains the information of X that is useful to predict y, but  

the correlation with s is removed. Thus, if we use this residual instead of X̂ in the second 

stage, the resulting prediction is not influenced by the correlation between S and X and 

therefore free from disparate impact. Note that in the first stage, one can add more control 

variables to S as long as they are not correlated with S, or disparate impact due to them 

are acceptable. One potential example of such a variable is high school GPA on college 

admission: even if difference across gender or race exist, we may not need to adjust it if it 

is self responsibility. 

Formally, our case considers a prediction problem with a fairness constraint (Section 

2.2). That is, to estimate the relationship 

yi = xi β + i, 

subject to fairness criteria that urges an estimator ŷi to be uncorrelated to si (Section 2.2.1). 
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Algorithm 3 2-Stage Discrimination Remover (2SDR). 

1: Input: Second stage algorithm f(x, z). 

2: Using training data (Strain,Xtrain,Ztrain,Ytrain): 

ˆ3: Bs ← ([Strain,Ztrain] [Strain,Ztrain])
−1[Strain,Ztrain] Xtrain. 

4: Utrain ← Xtrain − [Strain,Ztrain]B̂ 
s. 

5: Train the function f with (Utrain,Ztrain). 

6: for each data point (si, xi, zi, yi) in testdata do 

7: Predict ui ← xi − [si, zi] B̂ 
s. 

8: Predict ŷi ← f(ui, zi). 

9: end for 

The main challenge here is that xi is correlated with the sensitive variable si, and thus, 

simple use of the OLS estimator yields a dependency between ŷi and si. To resolve this 

issue, we use U = X − [S,Z]([S,Z] [S,Z])−1[S,Z] X, which is the residual of X 

regressed on S and Z and is free from the effect of S, for predicting Y. In the second 

stage, we use U and Z to learn an estimator of Y by using an off-the-shelf regressor or 

classifier. The entire picture of the 2SDR algorithm is summarized in Algorithm 3. 

One big advantage of our algorithm is that one may use any algorithm in the second 

stage, though we mainly intend a linear classifier or regressor for the reason discussed in 

Section (Theorem 2.4). Following the literature of machine learning, we learn the first and 

the second stage with the training dataset, and use them in the testing data set. 

2.3.3 Comparison with other data preprocessing methods 

The first stage of 2SDR (Line 3 of Algorithm 3) learns a linear relationship between 

S and X. This stage transforms each datapoint by making the second stage estimator free 

from the disparate impact, so one may view 2SDR as a preprocessing-based method that 

changes the data representation. This section compares 2SDR with existing methods that 

transform a dataset before classifying or regressing it. At a word, there are two classes of 
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data transformation algorithm: An algorithm of the first class utilizes the decision boundary 

and intensively resamples datapoints close to the boundary (Kamiran and Calders, 2010). 

Such an algorithm performs well in classifying datasets, but its extension to a regression 

task is not straightforward. An algorithm of the second class successfully learns a generic 

representation that can be used with any classifier or regressor afterward (Zemel et al., 

2013; Feldman et al., 2015). Such an algorithm tends to lose information at the cost of 

generality: the method proposed by Zemel et al. (Zemel et al., 2013) maps datapoints into 

a finite prototypes, and the one in Feldman et al. (Feldman et al., 2015) conducts a quantile-

based transformation, and loses the individual modal structures of the datapoints of s = 0  

and s = 1. As a result, these methods tend to lose estimation accuracy. Moreover, its 

extension to a numeric s is non-trivial. The first stage in our method can be considered to 

be a minimum transformation for making linear regression fair and preserves the original 

data structure. Section 2.5 compares the empirical performance of 2SDR with those of 

Zemel et al. and Feldman et al. (Zemel et al., 2013; Feldman et al., 2015). 

2.4 Analysis 

This section analyses 2SDR. We first assume the linearity between S and X in the first 

stage, and derive the asymptotic independence of U and S (Theorem 2.4.1). Although such 

assumptions essentially follow the literature of 2SLS and are reasonable, regarding our aim 

of achieving fairness, a guarantee for any classes of distribution on x and s is desired: 

Theorem 2.4.2 guarantees the fairness with a very mild assumption when the second stage 

is a linear regressor. 

Assumption 2.4.1 Assume the following data generation model where datapoints are i.i.d. 

drawn: 

yi = xi β + i (2.5) 

and 

xi = si Bs + ηi (2.6) 
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where i ∈ R and ηi ∈ R
dx are mean-zero random variables independent of si. Moreover, 

the covariance matrix of x is finite and full-rank 7 . 

The following theorem states that under Assumption 2.4.1, u is asymptotically inde-

pendent of s. 

Theorem 2.4.1 (Asymptotic fairness of 2SDR under linear dependency) Let (si, xi, zi, yi) 

be samples drawn from the same distribution as the training dataset, and ui is the cor-

responding residual learnt from the training distribution. Under Assumption 2.4.1, ui is 

asymptotically independent of si. Moreover, if zi is independent of si, ŷi is asymptotically 

independent of si. 

Proof Under Assumption 2.4.1, it is well known (e.g., Thm 5.1 in ((Wooldridge, 2013))) 

that the first-stage estimator is consistent. That is, B̂ 
s →p 

Bs as n → ∞, from which 

we immediately obtain ui →p 
ηi. By the assumption that ηi is independent of si, ui is 

asymptotically independent of si. The independence of ŷi and si follows from the fact that 

ŷi is a function of ui and zi that are asymptotically independent of si. 

From Theorem 2.4.1, we see that 2SDR combined with any classifier or regressor in 

the second-stage is fair (i.e., achieves a p%-rule for any p <  100 (resp. any MD > 0) in  

classification (resp. regression) with a sufficiently large dataset. Essentially, Theorem 2.4.1 

states that if the relation between u and s is linear, the first-stage OLS estimator is able to 

learn the relationship between them, and as a result u is asymptotically equivalent to η, 

which is the fraction of u that cannot be explained by s. 

Heteroskedasticity in x: As long as Assumption 2.4.1 holds, x is asymptotically 

independent of s. However, some of the assumptions may not hold for some variables in a 

dataset. In particular, Eq. (2.6) implies that x is linear to s, and thus, the distribution of x 

conditioned on s = 1 and s = 0 is identical after correcting the bias E[x|s = 1]−E[x|s = 0]  

8. Figure 2.1 shows some variables where the distribution of x is very different among s = 1  

7Note that this is a sufficient condition for the “no perfect collinearity” condition in Wooldridge (Wooldridge, 
2013). 
8For the ease of discussion, let s be binary value here. 
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(a) Distribution of PctUnemployed in the 

C&C dataset 

(b) Distribution of age in the Adult dataset 

Figure 2.1.: The difference of distribution in characteristics in sensitive characteristics. 

The first histogram (Figure (a)) shows the percentage of people in the labor force 

and unemployed (PctUnemployed) in each community in the C&C dataset, where the 

horizontal axis is PctUnemployed and vertical axis is the number of corresponding 

communities. The communities are categorized into the ones with a large portion of black 

people (C1) and the others (C2). One can see that PctUnemployed in C2 is sharply centered 

around 0.25, whereas the value in C1 shows a broader spectrum: As a result the variance of 

PctUnemployed is greatly differ among the two categories. The second histogram (Figure 

(b)) shows the number of people of different age in the Adult dataset, where the horizontal 

axis is the age and the vertical axis is the number of people. One can see that not only 

the variances but also the form of distributions are different between women and men, as 

majority of the women in the dataset are of the youngest category. The details of these 

datasets are provided in Section 2.5. 

and s = 0. Taking these variables into consideration, we would like to seek some properties 

that hold regardless of the linear assumption in the first stage. The following theorem states 

that 2SDR has a plausible property that makes ŷ fair under very mild assumptions. 

Theorem 2.4.2 (Asymptotic fairness of 2SDR under general distributions) Assume that 

each training and testing datapoint is i.i.d. drawn from the same distribution. Assume that 



� �

�

60 

the covariance matrix of x and s are finite and full-rank. Assume that the covariance matrix 

between x and s is finite. Then, the covariance vector Covsu ∈ R
ds×dx converges to 0 in 

probability as n → ∞, where 0 denotes a zero matrix. 

Proof Let (s, x, z, y) be a sample from the identical distribution. The OLS estimator in 

the first stage is explicitly written as 

B̂s = (StrainStrain)
−1StrainXtrain, 

which, by the law of large numbers, converges in probability to Cov−1(s, s)Covsx, where 

Cov−1(s, s) ∈ R
ds×ds is the inverse of the covariance matrix of s, and Covsx ∈ R

ds×dx is 

the covariance matrix between s and x. Then, 

ˆCovsu = Covsx − CovsBs s 

→p 
Covsx − CovssCov−1(s, s)Covsx 

= Covsx − Covsx = 0. (2.7) 

Asymptotic fairness of regressor: Notice that a linear regressor in the second stage 

outputs ŷ  as a linear combination of the elements of u and z. Theorem 2.4.2 implies that a 

regressor is asymptotically fair in the sense of MD (for binary s) or correlation coefficient 

(for continuous s). Unfortunately, it does not necessarily guarantee a fair classification 

under heteroskedasticity: A linear classifier divides datapoints into two classes by a linear 

decision boundary (i.e. ŷ  is whether a linear combination of u and z is positive or negative), 

and no correlation between u, z and s does not necessarily implies no correlation property 

between ŷ  and s. Still, later in Section 2.5 we empirically verify the fairness property of 

2SDR in both classification and regression. 

Generalization and finite-time analysis: The analysis in this section is very asymp-

totic and lacks a finite time bound. As OLS is a parametric model, the standard central limit 

theorem can be applied to obtain the asymptotic properties of the 2SDR estimator: Like the 
√ 

2SLS estimator, the 2SDR estimator is expected to converge at a rate of O(1/ n). 
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(a) CC as a func. of (b) CC as a func. of (c) CC as a func. of (d) CC as a func. of 

n dx σηs σs 

(e) RMSE as a func. (f) RMSE as a func. (g) RMSE as a func. (h) RMSE as a func. 

of n of dx of σηs of σs 

Figure 2.2.: Performance of the algorithm with different parameters. 

Correlation coefficient (CC) with different parameters (Figures (a)-(d)). Figure (a) is the 

result with different datasize, Figure (b) is the result with different dimension of x, Figure 

(c) is the result with different strength of correlation between x and s, and Figure (d) is the 

result with different variance of s. One can see that with sufficient large n (n ≥ 1, 000), 

2SDR has consistently removes correlation between s and ŷ. Figures (e)-(h) shows the 

root mean square error (RMSE) with the same setting as Figures (a)-(d), where RMSE is 

defined as the squared empirical mean of (ŷ − y)2 . The larger dx, Covxs, or  σs is, the gap 

of RMSE between 2SDR and OLS is larger. This is because (i) the correlation between x 

and s causes a disparate impact of OLS, (ii) whereas 2SDR, which keeps ŷ  fair, forces a 

large bias correction when the correlation is large. For each set of parameters the result is 

averaged over 100 independent runs. 
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2.5 Experiments 

In the previous section, we provided results suggesting that 2SDR achieves fairness in 

an asymptotic sense. To verify the actual performance of 2SDR, we conducted computer 

simulations. We first describe its results for a synthetic dataset (Section 2.5.1), and then 

describes its results for five real-world datasets (Section 2.5.2). Our simulation was im-

plemented in Python by using the scikit-learn library9. Each of the simulations took from 

several seconds to several minutes on a modern PC. 

2.5.1 Synthetic dataset 

This section compares 2SDR with the standard OLS estimator on synthetically-generated 

datasets. Each data point (si, xi, zi, yi) was generated from the following process, which is 

the standard assumption in the two-stage regression problem (Section 2.3.1): 

yi = xi βx + zi βz + (2.8) 

xi = si βs + ηi (2.9) 

zi ∼ N(0, σz) (2.10) 

∼ N(0, σ  ) (2.11) ⎛ ⎛ ⎞⎞ 
ση σηs 

(ηi, si) ∼ N ⎝0,⎝ ⎠⎠ . 
σηs σs 

Obviously, xi and si are correlated, and thus, a naive algorithm that tries to learn Eq. (2.8) 

suffers a disparate impact, whereas 2SDR tries to untangle this dependency by learning the 

relationship (2.9) in the first stage. Unless specified, we set each parameters as follows: 

dx = dz = 5  and ds = 1. σ = 3.0. ση, σz, and σs are diagonal matrices with each diagonal 

entry is 1.0, and σηs is a matrix with each entry is 0.3. Each entry of βx and βz are 0.5, and 

each entry of βs is 0.2. The number of datapoint n is set to 1, 000, and 2/3 (resp. 1/3) of  

the datapoints are used as training (resp. testing) datasets, respectively. Figure 2.2 shows 

the correlation coefficient as as measure of fairness and root mean squared error (RMSE) 
9http://scikit-learn.org/ 

https://9http://scikit-learn.org
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as a measure of prediction power for various values of parameters. 2SDR is consistently 

fair regardless of the strength of the correlation between x and s. 

2.5.2 Real-world datasets 

This section examines the performance of 2SDR in real-world datasets. The primary 

goal of Section 2.5.2 and 2.5.2 are to compare the results of 2SDR with existing results. We 

tried to reproduce the settings of existing papers (Calders et al., 2013; Feldman et al., 2015) 

as much as possible. Section 2.5.2 provides the results with numerical s. In the Appendix, 

we provide additional results for other datasets and other settings such as multiple sensitive 

variables case and nonlinear machines. 

We conducted a set of simulations with four datasets: Namely, The Adult dataset, 

the Community and Crime (C&C) dataset, the Compas dataset, and the German dataset. 

Unordered categorical attributes are expended into dummies. Adult, Compas, and German 

are classification datasets (i.e., y = {−1, +1}), whereas C&C is a regression dataset. 

Unless explicitly described, we only put the intercept attribute (i.e., a constant 1 for all 

datapoints) into z. We used OLS in each attribute of the first stage, and OLS (resp. the 

Ridge classifier) in the regression (resp. classification) of the second stage. Note that 

the ridge classifier is a linear model that imposes l2-regularization to avoid very large 

coefficients, which performs better when the number of samples is limited. For binary s, 

(i) we removed the attributes of variance conditioned on s = 0 or s = 1 being zero because 

such a attribute gives a classifier information that is very close to s, and (ii) we conducted a 

variance correction after the first stage that makes the variance of U conditioned on s = 1  

and s = 0 identical. 



64 

Regression results for C&C dataset 

We first show the results of a regression on the Communities and Crime10 dataset that 

combines socio-economic data and crime rate data on communities in the United States. 

The Community and Crime (C&C) dataset involves 101 attributes and 1, 994 datapoints. 

Following (Calders et al., 2013), we made a binary attribute s as to the percentage of 

black population, which yielded 970 instances of s = 1  with a mean crime rate y = 0.35 

and 1, 024 instances of s = 0  with a mean crime rate y = 0.13. Note that these figures are 

consistent with the ones reported in Calders et al. (Calders et al., 2013). Table 2.1 shows 

the results of the simulation. At a word, 2SDR removes discrimination while minimizing 

the increase of the root mean square error (RMSE). One can see that in the sense of RMSE, 

OLS and SEM-MP (Calders et al., 2013) perform the best, although these algorithms do not 

comply with the two fairness criteria. On the other hand, 2SDR and SEM-S (Calders et al., 

2013) comply with the fairness criteria, and with 2SDR performing better in the sense of 

regression among the two algorithms. Furthermore, we put two attributes (“percentage of 

divorced females” and “percentage of immigrants in the last three years”) into explanatory 

attributes z, whose results are shown as “2SDR with explanatory attrs” in Table 2.1. One 

can see that the RMSE of 2SDR with these explanatory attributes is significantly improved 

and very close to OLS. 

Classification result with Adult and German datasets 

This section shows the result of classification with the Adult and German datasets. 

The adult dataset is extracted from the 1994 census database, where the target binary 

attribute indicates whether each person’s income exceeds 50,000 dollars or not. German is 

a dataset that classifies people into good or bad credit risks 11. The Adult dataset involves 

49 attributes and 45, 222 datapoints, whereas the German dataset involves 47 attributes and 

1, 000 datapoints. 

10http://archive.ics.uci.edu/ml/datasets/communities+and+crime 
11https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data) 
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Table 2.1.: Regression Results. 

Algorithm MD AUC RMSE 

OLS 0.22 0.85 0.14 

2SDR 0.02 0.48 0.18 

2SDR with explanatory attrs 0.12 0.69 0.15 

SEM-S 0.01 0.50 0.20 

SEM-MP 0.17 0.76 0.14 

Note: The scores are averaged result over 10-fold cross validation ((Calders et al., 2013)). 

The results of SEM-S and SEM-MP are the ones reported in Calders et al. (Calders et al., 

2013). “2SDR with explanatory attrs” shows the result of 2SDR with two explanatory 

attributes (”FemalePctDiv”,”PctImmigRecent”]) added to z. A smaller MD indicates better 

fairness, and an AUC close to 0.5 indicates a very fair regressor. Smaller RMSE indicates 

better regression accuracy. 

Following Zemel et al. and Feldman et al. (Zemel et al., 2013; Feldman et al., 2015), 

we used sex (resp. age) in the Adult (resp. German) datasets. Age in the German dataset is 

binarized into Young and Old at the age of 25 (Calders et al., 2013). Some sparse attributes 

in Adult are summarized to reduce dimensionality (Zafar et al., 2017a). 

Let us compare the results shown in Table 2.2 with the ones reported in previous 

papers. In a nutshell, 2SDR, which complies with the 80%-rule, outperforms two data 

preprocessing methods on the Adult dataset, and performs as well as them on the German 

dataset: Zemel et al. (Zemel et al., 2013) reported that their data transformation combined 

with a naive Bayes classifier has ∼ 80% (resp. ∼ 70%) accuracy on the Adult (resp. 

German) datasets. Moreover, Feldman et al. (Feldman et al., 2015) reported that their data 

transformation combined with a Gaussian Naive Bayes classifier had accuracy of 79 ∼ 80% 

(resp. 70 ∼ 76%) on the Adult (resp. German) datasets. The method by Zemel et al. 
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Table 2.2.: Classification results for the Adult and German dataset. 

Adult dataset German dataset 

Algorithm P%-rule Accuracy Algorithm P%-rule Accuracy 

OLS 0.30 0.84 OLS 0.47 0.73 

2SDR 0.83 0.82 2SDR 0.81 0.73 

Note: The column “Accuracy” presents the classification accuracy. Unlike OLS, which 

does not take fairness into consideration, 2SDR complies with the 80%-rule. In German 

dataset, the result is averaged over 100 random splits over the training and testing datasets, 

where two-thirds of the datapoints are assigned to the training dataset at each split. 

(Zemel et al., 2013) coarse-grains the data by mapping them into a finite space, which we 

think the reason why its performance is not as good as ours. Meanwhile, the quantile-

based method by Feldman et al. (Feldman et al., 2015) performed impressively well in the 

German dataset but not very well in the Adult dataset: In the Adult dataset, it needed to 

discard most of the attributes that are binary or categorical, which we consider as the reason 

for the results. 

Numeric s 

Next, we considered numeric sensitive attributes. Table 2.3 shows the accuracy and 

correlation coefficient in OLS and 2SDR. On the C&C dataset, 2SDR reduced correlation 

coefficient (CC) with a minimum deterioration to its RMSE. In other words, 2SDR was a 

very efficient at removing the correlation between ŷ  and s. 
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Table 2.3.: Results in the case s is median income (C&C) or age (Adult and German). 

Algorithm (Dataset) CC Accuracy RMSE 

OLS (C&C) 0.50 - 0.14 

2SDR (C&C) 0.04 - 0.17 

OLS (Adult) 0.22 0.84 -

2SDR (Adult) 0.07 0.83 -

OLS (German) 0.11 0.76 -

2SDR (German) 0.05 0.75 -

Note: Note that age was not binarized in the result of this table. 

2.6 Conclusion 

We studied indirect discrimination in classification and regression tasks. In particular, 

we studied a two-stage method to reduce disparate impact. Our method is conceptually 

simple and has a wide range of potential applications. Unlike most of the existing methods, 

our method is general enough to deal with both classification and regression with various 

settings. It lies midway between a fair data preprocessing and a fair estimator: It conducts 

a minimum transformation so that linear algorithm in the second stage is fair. Extensive 

evaluations showed that our method complied the 80%-rule the tested real-world datasets. 

The following are possible directions of future research: 

• Other criteria of fairness: While the disparate impact considered in this paper is 

motivated by the laws in the United States, the notion of fairness is not limited 

to disparate impact (Berk et al., 2017b). To name a few studies, the equalized 

odds condition (Hardt et al., 2016) and disparate mistreatment (Zafar et al., 2017a) 

have been considered. Extending our method to other criteria of fairness would be 

interesting. 
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• Non-Linear second stage: In this study, we restricted the second-stage algorithm to 

be linear. The main reason for doing so is that the first stage in 2SDR is designed to 

remove the correlation between ŷ  and s, which is very suitable to linear algorithms 

(Theorem 2.4.1 and 2.4.2). We have also conducted some experiment with gen-

eralized linear model in the second stage (Section E), where we observed a inferior 

fairness than a linear model. Extending our work to a larger class of algorithms would 

boost the accuracy of 2SDR on some datasets where non-linearity is important. 

• Economic impact of fairness constraint: Fairness adjustment may influence the 

incentive of the agents. In hiring decision, the Similar to affirmative action, 
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3. SO YOU THINK YOU ARE SAFE? 

IMPLICATIONS OF QUALITY UNCERTAINTY 

IN SECURITY SOFTWARE 

3.1 Introduction 

Over the past few years, the importance of information security has become increas-

ingly apparent not only for organizations but also societies. Security software, which 

serves as the front line of defense against cyber threats, has been widely adopted and 

has become essential to users. However, despite the availability and variety that security 

software has to offer, its ability to protect the user is still far from perfect. For example, 

only about a half of 47 major antivirus software in 2014 could detect new threats on 

the release date while 10% of them still failed to detect threats a year after the release 

(Vigna, 2014). This lack of quality issue is especially important as end-users tend to 

have limited knowledge regarding information security (?, e.g.,)]katz2005effect, albrecht-

sen2007qualitative and thus falsely believe in the quality of the security software they 

adopt. This “false sense of security” among end-users that they tend to overestimate 

the quality of the security software they adopt has been documented in several studies 

(?, e.g.,)]guo2013humanfactor,mcafee2013smallbus. An extreme example that illustrates 

this behavior is the android application named “Virus shield,” which was sold as a security 

application for $3.99 in the Google Play store and became the top-selling application with 

more than 30,000 downloads and 5-star ratings in only a week. However, a few days later, 

a security expert discovered that it actually does absolutely nothing (Andow et al., 2016). 

Because of this false sense of security, an individual who adopts security protection 

might wrongly alter her behavior by embracing a higher level of risk (such as downloading 

or executing files from unknown sources more promptly), thus somewhat offsetting the 

level of protection she obtains by adopting the security product. This risk compensa-
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tion behavior is similar to the well-known “Peltzman Effect,” which was introduced to 

the literature in a study of the effectiveness of the seatbelt regulation. The study found 

that seatbelt induces drivers to drive less safely (Peltzman, 1975), which may lead to 

the increase in the number of non-fatal accidents (Cohen and Einav, 2003). The risk 

implication because of information asymmetry between the perception and the reality of 

the quality of the security software can be extensive, as highlighted in the prior works (?, 

e.g.,)]christin2012s,warkentin2012areyousure. Yet, most game theoretic models in the do-

main of information security do not account for information asymmetry or its consequence 

in their analysis e.g. (Arora et al., 2006; ?). Their welfare analyses are conducted assuming 

that consumer expectations are accurate. What do inaccurate consumer expectations mean 

for social welfare? This question is the key focus of our study. 

Our model incorporates several distinctive features regarding consumer behavior. First, 

we allow users to receive information regarding the quality of security software before 

making purchasing decisions. We assume that ill-informed consumers receive biased in-

formation regarding the software quality while the well-informed consumers, on the other 

hand, receive the information pertaining to the true quality of security software. Each 

consumer is unaware whether she belongs to the ill- or well-informed segment when she 

makes her purchasing decisions under this uncertainty. Following that, after making a 

purchasing decision, each consumer decides on the extent of engaging in activities that 

create value in their eyes yet potentially harm them. Finally, consumers realize their utility 

that is dependent on the risky behavior they exerted, the quality of the product consumed, 

and their own preference. In this manner, we account for the uncertainty in quality as well 

as risk compensation behavior in the consumer’s utility function, an aspect which is a novel 

feature of our setup. In such a market, we study the implications of a monopolistic vendor 

offering to sell a product by choosing its price and quality. 

Our study yields particularly interesting insights into welfare implications. First, al-

though the amount of bias (i.e., the difference between the true quality of security software 

and that of consumer perception) may appear to have a negative impact on society, we 

find that social welfare could actually increase as the amount of bias increases. Second, in 
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some circumstances, society is better off even without the security software in the market– 

it is because the negative impact of over-estimation outweighs the benefit of adopting such 

software. Third, social welfare is not maximized even when consumers know about the 

proportion of well- and ill-informed consumers. We provide insights into these seemingly 

counterintuitive results. 

In the next section, we review the literature that relates to our paper. In Section 3.3, 

we describe the formulation and basic elements of the quantitative model we propose in 

this study. Section 3.4 analyzes the existence of equilibrium and related observations 

in the model and subsequently describes the implication of the welfare parameters. We 

then generalize our model by providing several alternative specifications in Section 3.5. 

Finally, in Section 3.6, we discuss our findings and conclude our research with managerial 

implications, contributions, limitations, and future research avenues. 

3.2 Literature Review 

In this section, we survey the literature in four different streams related to our study. 

First, we present a survey of prior literature that discusses the differences between per-

ception and reality. Second, we review the literature in the domain of an individual’s risk 

compensation behavior. Third, we explore previous literature that studies the implication 

of product quality uncertainty. Lastly, we survey the literature on the economics of infor-

mation security. 

3.2.1 Perception versus Reality 

The difference between perception and reality is one of the classical topics that has 

been widely discussed in the philosophy literature e.g.,(Sellars et al., 1963; ?; ?). The 

implications of such differences have been studied in various domains to explain a wide 

range of phenomena. Examples include the relationships between environmental measures 

and physical activity in medicine (Kirtland et al., 2003); the concept of disavowal in 

psychology (Basch, 1983); and the failures in financial report auditing (Chenok, 1994). In 
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the specific context of information security, the difference between perception and reality 

corresponds to users’ inability to accurately estimate the level of protection they obtain by 

adopting security technologies. In fact, (Chellappa and Pavlou, 2002) use a survey to show 

that consumers’ perceived information security is not necessarily the same as the objective 

assessment of potential threats and that this false perception can significantly influence 

consumer trust in electronic commerce transactions. Furthermore, many industry-based 

studies find that the gap between consumers’ perception and reality tends to make users 

overly optimistic and creates a phenomenon called “false sense of security” among end-

users (Guo, 2013), small business owners (Ragan, 2013), and non-IT executives (Dipietro, 

2014). (Hui, 2010) captures this behavior in a laboratory experiment and concludes that a 

strong security software brand could induce users to overestimate the level of security they 

would attain from using the software, especially among users with low levels of knowledge 

about information security. Despite several empirical studies suggesting that a gap exists 

between consumers’ perception and reality, most of the prior works in the context of infor-

mation security that utilize a game-theoretic model do not model the difference explicitly. 

Regarding the theoretical modeling of this issue and studying the implications, we are 

only aware of the advance selling context where it has been done so e.g.,(Xie and Shugan, 

2001; ?). A distinctive feature of our model is that we consider the variation between the 

realized and expected utilities when studying the implication of information asymmetry 

in the information security context. Information asymmetry can manifest in terms of risk 

compensation behavior or a lemon market-like situation. The next two subsections survey 

the previous literature related to those issues. 

3.2.2 Risk Compensation Behavior 

This stream of research analyzes how perception and reality not being identical trans-

lates into risk compensation behavior by the consumers. The well-known and controver-

sial1 Peltzman effect (Peltzman, 1975) demonstrates that drivers tend to embrace greater 

1A few other papers argue against the Peltzman effect e.g.,(Graham and Garber, 1984). 
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accident risk because they feel safer when wearing a seat belt. He concludes that although 

the regulation could reduce the risk of death from an accident, compared with an un-

regulated market, this reduction is offset by the fact that drivers tend to embrace greater 

accident risk with the presence of seat belts. Many follow-up studies have shown similar 

behaviors in other contexts. For example, (Rudin-Brown and Jamson, 2013) examine 

Munich taxi drivers with and without anti-lock braking systems (ABS) and posit that 

drivers who operate ABS-equipped vehicles are more likely to create traffic conflicts. In 

addition, (Prasad and Jena, 2014) invoke the Peltzman effect to explain why some health 

care interventions, which seem noble, fail to yield their intended benefits. (Vrolix, 2006) 

provides a comprehensive review of related literature and concludes that the magnitude 

of such risk compensation behavior varies depending on the context. For example, even 

though the number of accident may increase because of the risk compensation behavior in 

the classic case of seat belt, the number of fatal accident may decrease because of the seat 

belt.2 

The potential issue of risk compensation behavior in the context of information security 

has been recently raised in the research community (Christin, 2011). However, we are only 

aware of one prior study in this area which conducts a laboratory experiment to show that 

users tend to ignore security advice and open themselves to unknown risk when incentives 

exist to encourage such behavior (Christin et al., 2012). (Warkentin et al., 2012) also 

argue in their study that consumers in information security markets are likely to exhibit 

risk compensation behavior. They propose several potential research methodologies for 

behavioral researchers to further study this topic. To the best of our knowledge, we are 

the first to incorporate risk compensation behavior into the model of consumer and provide 

insights into how risk compensation behavior affects both individual and social welfare. 

2Note that the Peltzman effect in the prior literature accounts jointly for both the direct effect (i.e., engaging 
in risky behavior) as well as the indirect effect (i.e., learning that occurs from engaging in risky behavior). 
For instance, (Pope and Tollison, 2010) study the behavior of NASCAR drivers. Here, an accident caused by 
one driver could also affect other drivers. Hence, their behavior may reflect the indirect effect as drivers may 
drive more cautiously when other drivers are reckless. Even in this context, the Peltzman effect is recognized. 
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3.2.3 Implication of Quality Uncertainty 

While the previous subsection reviews the literature that focuses on the effect of per-

ception versus reality on the demand side, this subsection surveys papers that examine the 

supply side implications of information asymmetry. Note that one main reason for the 

difference between perception and reality is that consumers face uncertainty about quality. 

Regarding market implications in the face of quality uncertainty, one of the seminal papers 

is (Akerlof, 1970), which investigates the second-hand automobile market. He concludes 

that such uncertainty can push good quality products out of the market and collapse the 

market as a result. Other areas of management have also observed this phenomenon, in-

cluding finance e.g.,(Beatty and Ritter, 1986); accounting e.g.,(DeAngelo, 1981); operation 

management e.g.,(Lim, 2000); and information systems (Dimoka et al., 2012). A number 

of papers have followed up on potential avenues to overcome the problems in Akerlof’s 

lemon market. One such idea is to build a reputation system e.g.,(Resnick et al., 2000), 

and papers have demonstrated support for such a system e.g.,(Gefen et al., 2003; Ba and 

Pavlou, 2002). Others have also considered governmental interventions but have concluded 

that reducing uncertainty by imposing government regulation alone might not be effective 

e.g.,(Hoffer and Pratt, 1987). As we demonstrate later, quality uncertainty does indeed 

play an important role in moderating the welfare implications in the information security 

market. 

3.2.4 Economics of Information Security 

In this subsection, we review analytical research in the information security context that 

is closely related to our study. Particularly, we survey two substreams of prior literature 

that share key modeling details with our work, including papers that study the market 

for security software and a firm’s decisions on product quality, and the implications of 

policymaker and government intervention. However, this paper is significantly different 

from the prior works surveyed in this subsection as we allow users to be uncertain about 
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product quality. We are not aware of any previous work in this area that has incorporated 

this aspect of information uncertainty into an analytical model. 

The market for information security software has been modeled and analyzed in the 

literature. Its unique characteristics (e.g., the market is highly competitive yet the coverage 

is low) have been established by (Dey et al., 2012), who model the market for security 

software in the presence of hackers, different types of attacks, and network effects; and 

argue that these elements contribute to the uniqueness of the market. In addition to the 

characteristics of the market, the welfare implications of the market entities has also been 

studied in a scenario where software patch availability is restricted (Kannan et al., 2016). 

In such a case, the vendor can strategically choose the price and maintenance decisions to 

take advantage of the presence of the hacker in the market. Furthermore, a firm’s decision 

on product quality has also been studied in many contexts. For example, (August and 

Tunca, 2006) incorporate network externalities to analyze different patching policies to 

manage network security. They show that patching policy is not a one-size-fits-all approach 

in the sense that the optimal policy differs based on context (e.g., proprietary software 

vs. freeware, patching cost, and security risk) and that using the right user incentive can 

significantly improve software generated value and firm profits. In addition, the trade-offs 

between tolerating illegal software usage and enjoying positive network effect from higher 

number of users has been analytically analyzed (Lahiri, 2012). The results demonstrate 

that the conventional wisdom, which suggests that companies could benefit from the illegal 

distribution of their software product due to positive network externalities, might not be true 

when patching is also considered. Moreover, (Arora et al., 2006) build an economics model 

based on a firm’s trade-off decision between selling error-prone software early and the cost 

of fixing it later. They show that the firm has incentives to release software with more 

bugs early when the market is sufficiently large, in contrast with the case of manufacturers 

of physical goods. Our model is constructed based on key modeling details proposed by 

the literature in this substream. Meanwhile, we incorporate consumers’ risk compensation 

behavior into the model and allow the firm to make decisions based on the presence of 

quality uncertainty among consumers. 
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The second substream of literature examines the implications for policymaker and gov-

ernment intervention in the context of information security. On the one hand, the interven-

tion has been shown to benefit society. For example, (Kannan and Telang, 2005) conclude 

that the case where companies sell a subscription for software vulnerability disclosures 

almost always underperforms the approach where such disclosures are provided for free 

by government-subsidized entities. On the other hand, such an intervention has also been 

shown in other contexts to be suboptimal. For instance, (Png and Wang, 2009) find that 

enforcement by the government against attackers is less effective compared with educating 

end-users, especially when attacks are targeted. Furthermore, different interventions can 

lead to different outcomes. For instance, (Chen and Png, 2003) study several cases of 

government policy on copyright enforcement and find that the case where a government 

subsidizes a legitimate purchase leads to higher social welfare compared with the case of 

a fine for piracy or a tax on copying medium. Given the conflicting findings from the pre-

vious literature, our work provides insights into the welfare implications for policymaker 

intervention in the presence of quality uncertainty about security software. 

In summary, the literature in subsection 3.2.1 has demonstrated that a large portion 

of security software users tend to be overly optimistic about the level of security their 

software offers. In addition, previous works in subsection 3.2.2 and 3.2.3 have shown that 

risk compensation behavior, particularly drawing upon the Peltzman effect, implies that this 

uncertainty could adversely affect the firm’s decision and social welfare. However, much 

of the literature in the economics of information security has not considered modeling 

this aspect. Our paper utilizes a game-theoretic model to provide insights into the resulting 

welfare implications. We are among the first to provide a formal analysis of the implications 

of consumer uncertainty in the context of the security software market. 

3.3 Model 

We begin by highlighting two key features of our model. The first feature is that 

we capture the consumers’ uncertainty regarding the nature of the security software by 
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assuming that they cannot directly observe the software’s true quality. Instead, they observe 

a signal that contains imperfect information of the quality. Furthermore, they are aware that 

the signal may be noisy. The signals lead to beliefs about quality and play an important role 

in determining whether the consumers purchase the software and also how they generate 

value from the software. The second key feature is that, after consumers decide whether or 

not to purchase the security product, they engage in value-adding but risky activities based 

on their perception of the software quality. The main intention of this feature is not only to 

capture the Peltzman-like effect in the information security context but also to analyze the 

effect of misperception on the welfare parameters. 

We study such behaviors of consumers in a monopolistic market with the vendor choos-

ing the security quality q and price p. Our analysis of the monopolistic market3 can be 

justified as follows. Information security can be considered as an information good. As 

(Jones and Mendelson, 2011) note, the markets for information goods tend to result in a 

monopolistic market. Further, ours is one of the first papers in the information security 

context to analyze welfare implications caused by consumer uncertainty. A monopolistic 

model is useful in providing insights about the trade-offs that are germane to this setup. 

Next, we describe the two primary players in our models, the vendor and the consumers. 

3.3.1 Vendor 

The way we model the vendor is fairly standard and is described first. In this market, the 

monopolistic vendor realizes a demand D(p, q), which varies with the price p and quality 

q chosen by the vendor. We ignore the fixed cost of producing the security software and 

consider the marginal cost of producing additional copies to be zero. However, the software 

quality is a consequence of the maintenance effort, such as virus signatures that need to 

be identified in antivirus software. For this purpose, we assume the cost function c(q) is 

strictly convex, strictly increasing in quality, and zero when the quality is zero. Also, we 

3Although we recognize that in reality, the market for security software typically involves a number of vendors 
(e.g., antivirus, backup software, host-based intrusion prevention systems), a market also exists with a limited 
number of vendors (e.g., data-loss prevention, security compliance). 
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assume c (0) = 0 and lim c (q) =  ∞. The vendor’s choice is to maximize the profit 
q→∞ 

π = p D(p, q) − c(q). Therefore, the vendor chooses the optimal price and quality to 

maximize its profit4: 

(p   , q    ) = arg  max  π. 
p,q 

3.3.2 Consumers 

Our modeling of consumers is distinctive and is described below. For ease of under-

standing, we separate the explanation of our modeling into several steps as follows: 

Heterogeneous consumer utility function: The consumer utility function involves three 

parameters x, q, and β in the form u(x; q, β). The parameter β ∈ (0, 1) captures consumer 

heterogeneity regarding valuations that consumers obtain from engaging in digital activi-

ties. It is assumed to follow a distribution whose pdf is f(β). Each consumer is aware of her 

own β. The parameter x is the amount of value-adding but risky behavior that the consumer 

engages in. For example, the recent articles about White House aides using the not-so-

secure Confide app to engage in potentially private conversations believing in the “military-

grade security” encryption, even though it may not be so (Newman, 2017) illustrates the 

risky behavior some consumers might engage in. Eventually, we will endogenize x. The 

term q is the quality of the security software employed. If the consumer does not purchase 

the software, we assume that she generates the utility u(x; 0, β). 

Structure of the quality signal: Let us assume that consumers, independent of their 

β, receive a signal q̃  that contains imperfect information of the quality.5 For simplicity, 

we assume that there are only two types of signals: accurate signals and biased signals. 

For instance, a consumer may receive an accurate evaluation if she consumes information 

from credible technical reports about security software quality but may receive a biased 

signal from paid reviews or sponsored reports that exaggerate the quality of the security 

4In our single period model, we do not explicitly allow the reputation to affect the firm’s choice of p and q. 
However, by incorporating a separate reputation cost that is a function of quality, we can demonstrate that the 
results remain qualitatively similar. 
5Assuming uncertainty on product quality is common in the literature in the economics of information. For a 
comprehensive literature review, see (Stiglitz, 2000). 



79 

software. Let consumers who receive the accurate signal q̃ = q be referred to as well-

informed consumers, and those who receive the biased signal q̃ = g(q; s) be referred to as 

ill-informed consumers. Here, s represents the amount of bias. If Pr(q̃|q) represents the 

distribution of the signal q̃ conditional on the true quality q, the consumer infers Pr(q|q̃) 
when making the purchasing decisions. For our analysis, we assume: 

Pr(q̃|q) =  

⎧ ⎪⎪⎪⎪⎪  

⎪⎪⎪⎪⎪⎩ 

σ if q̃ = g(q; s) 

1− σ if q̃ = q (3.1) 

0 otherwise, 

where σ represents the probability of observing a biased signal. 

Assumptions regarding the biased signal (g(q; s)): First of all, we assume that s is 

a common knowledge. Second, we assume g(q; s) > q, which conveys the meaning 

that we only focus on overestimating consumers. Note that the ill-informed consumers’ 

misestimation is a function of an exogenous parameter s which captures the amount of 

bias. Therefore, a large s means a large difference between perception and reality, i.e., 
∂ (g(q; s)− q) > 0 (obviously, it implies that ∂g(q;s) > 0). Moreover, g(q; 0)  =  q, i.e., if 
∂s ∂s 

there is no bias, the perceived quality is identical to the true quality of the security software. 
∂g(q;s)Finally, we assume 
∂q > 0, meaning that the biased signal takes larger value with the 

larger actual quality. 

Redefining some variables: Later in Section 3.5 of the paper, we allow for the gen-

eralization of more than two types of signals. Therefore, to facilitate those discussions, 

we redefine some variables. The total mass of consumers is normalized to one. Each 

consumer belongs to a segment t ∈ {1, 2}, where t = 1 represents ill-informed consumers 

who receive a biased signal, and t = 2 represents well-informed consumers who receive an 

accurate signal. Let q̃t be the signal observed by group t, i.e., q̃1 = g(q; s) and q̃2 = q. 

Recall that the probability a consumer observes a biased signal is σ. We denote the 

proportion of consumers of a group t as σt, where σ1 = σ and σ2 = 1 − σ. These are 

assumed to be known to the vendor. For ease of readability, we interchangeably use σ with 

σ1 and (1− σ) with σ2. 
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Getting to Pr(q|q̃): Generally speaking, as mentioned earlier, consumers would infer 

Pr(q|q̃) for decision-making. To capture the reality of the uncertainty of the market, 

we assume that consumers are not only unaware of true quality but also of how likely 

their signal is to be biased. Similar issue has been recently highlighted in the context 

of news. For example, anecdotal evidence has suggested that consumers are unable to 

properly evaluate the reliability of the media source e.g.,(Swartz and della Cava, 2016; 

Silverman and Singer-Vine, 2016). Relatedly, a formal research article has also reached 

the same conclusion (Wineburg and McGrew, 2016). Therefore, we allow consumers 

ˆto believe in a data generating process, Prt(q̃|q), which may differ across segments and 

also differs from Pr(q̃|q) as defined earlier in Equation 3.1. Using Bayesian updates, 
P̂ rt(q̃|q)P r̂ t(q)P̂ rt(q|q̃) =  . Assuming non-informative prior, we define: 

P r̂ t(q̃) 

P̂ rt(q|q̃) =  

⎧ ⎪⎪⎪⎪⎪  

⎪⎪⎪⎪⎪⎩ 

rt if q = g−1(q̃; s) 

1− rt if q = q̃ 

0 otherwise. 

Note that rt is the subjective probability of the signal being biased. Also with this 

construct, rt can be interpreted as the chance that a consumer in segment t believes that a 

signal she receives is biased, which may or may not be the true probability σ. Intuitively, 

from the perspective of consumers in segment t who observe signal q̃t, there are two 

possibilities: the signal they observe may be the true quality, or it is biased. In the former 

case, the true quality is simply q = q̃t. In the latter case, g(q; s) = q̃t, thus the true quality is 

q = g−1(q̃t; s). In the context involving two types, true quality for an ill-informed consumer 

is q̃1 = g(q; s) as the signal indicates, or it could be g−1(q̃1; s) = g−1(g(q; s); s) = q if the 

signal is biased. Similarly, for a well-informed consumer, the true quality can be either 

q̃2 = q or g−1(q̃2; s) =  g−1(q; s). To summarize the different quality levels, Figure 3.1 

illustrates the notations of product qualities in our study. The arrows marked horizontally 

demonstrate the possible quality levels that the consumer suspects she is in. Note that 
∂g−1(q;s)because g(q; s) is strictly monotone in s, 

∂s < 0. Note that we construct the main 

model such that the amount of bias (s) has only one value for all consumers. When we 
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generalize our model in Section 3.5.1, we allow each segment of consumers to have its 

own s. 

Figure 3.1.: Notations of perceived quality by the two consumer segments 

Expected utility based on belief on quality: Given the belief on quality derived in the 

previous section, a consumer’s perceived expected utility is simply 

Ũt(x; q̃t, β) = (1− rt)u(x; q̃t, β) + rtu(x; g −1(q̃t), β). (3.2) 

Optimally perceived risky behavior + Optimally perceived expected utility: Based on 

the perceived expected utility from Equation 3.2, we compute the optimally perceived risky 

behavior as x   = argmax  Ũ 
t(x; q̃t, β) and the corresponding expected utility is simply t x 

defined as Ũ (β, q). A consumer purchases the product if and only if Ũ (β, q) − p >t t 

Uno(β) ≡ maxx u(x; 0, β), where Uno is the utility if the consumer does not purchase the 

product. 

Properties of the realized utility function: Because the perceived utility might be dif-

ferent from the realized utility, we next define the properties of the realized utility function 

for a consumer, which we earlier denoted as u(x; q, β). 

1. We assume that u(x; q, β) is strictly concave and continuous in x (i.e., the payoff is 

concave with respect to the risky behavior) and continuous and strictly increasing 

in q and β (i.e., the payoff increases as the product quality increases or a consumer 

possesses higher β). 

∂2u2. For any β, x, and q, we assume that 
∂β∂x > 0, i.e., a consumer with higher β 

generates a larger marginal utility from the extra level of risky behavior. 
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∂2u3. Let 
∂q∂x > 0 for any x and β. This characterization is consistent with the perception 

that a consumer can enjoy more risky behavior with less security concern when the 

quality of security software is higher. 

Using these results, we can establish that: 

Lemma 3.3.1 For a given β, the perceived expected utility is higher for the ill-informed 

consumer than for the well-informed one. Hence, the market share from the well-informed 

consumers is smaller than or equal to that from ill-informed ones. That is, Ũ1 > Ũ2 and 

β2 
  ≥ β  

1 . 

Model Specialization 

For the sake of tractability in our analysis, we impose additional assumptions on the 

consumer’s perceived expected utility. First, we assume that the probability density func-

tion f(β) follows the uniform distribution. Second, we assume that the perceived expected 

utility at the chosen amount of risky behavior x is functionally separable as: 

˜   U   (β, q) =  Ũ 
t(xt , q̃t, β) =  βm(q)nt(s, rt), (3.3)t 

where m(q) is strictly concave in q, and nt(s, rt) is a function of s and rt that is different 

depending on the consumer segment t. Finally, we assume that m(q = 0) = 0.6 Here, the 

m(q) term captures how the quality of the security product affects consumers’ perceived 

expected utility. This effect is similar to the Akerlof’s lemon market effect (Akerlof, 1970), 

which we will explain in detail at the end of section 3.4.1. In the meantime, the term 

nt(s, rt) captures the “Peltzman-like” effect for consumers in segment t. Specifically, 

nt(s, rt) endogenizes, within the perceived expected utility expression, the consumers’ 

risky behavior as a function of the bias that the consumers have regarding the software 

quality and the likelihood that a biased signal is received. The separability assumption 

delivers two important dimensions. First, it improves the tractability of our model. Second, 

more importantly, it helps us to separately study the impact of the two effects on consumers’ 
6Other assumptions such as m(q) ≥ 0 if q ≥ q̂  and vice-versa will generate similar results. 
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perceived expected utility. Additionally, our main insights remain intact even though the 

separability assumption is relaxed, which we will demonstrate in Section 3.5.3. Based on 

the assumptions mentioned here and the assumptions discussed earlier, we have: 

Lemma 3.3.2 m(q) is a continuous, differentiable, and strictly increasing function of q. 
∂n1(s,r1) > 0; ∂n2(s,r2)nt(s, rt) is a continuous and differentiable function of s and rt. < 0;

∂s ∂s 

and ∂nt(s,rt) ≤ 0 for t = {1, 2} but the inequality is strict only if s >  0. The utility from not 
∂rt 

purchasing the security software, Uno(β) = 0  for any β. 

The lemma shows that m(q) is a well-behaved function of q. In addition, the change 

in nt(s, rt) with respect to s and rt allows us to observe that the perceived expected utility 

of ill- (well-) informed consumers increases (decreases) with respect to s, and that the 

perceived expected utility decreases with respect to rt. Before we progress forward, Table 

3.1 summarizes the variables we have defined so far. 

3.4 Equilibrium Results 

We solve this two-stage game by computing the Subgame Perfect Nash Equilibrium 

using backward induction. Recall that the first stage is the vendor’s decision on quality and 

price, and that the second stage is the consumers’ purchasing and usage behaviors. 

3.4.1 Consumers’ Actions: Second Stage 

Consumers choose whether to buy security software or not based on the price and 

perceived quality. Fix consumer segment t = {1, 2}. A consumer purchases the product 

if βm(q)nt(s, rt) − p >  0 but not otherwise. If β  represents the indifferent consumer int 

segment t, only consumers with β ∈ (βt 
  , 1) purchase the product (because the consumer 

utility is monotonically increasing with β). Based on the expected utility function, βt 
  = 

min{
m(q)n

p 
t(s,rt) 

, 1}. By Lemma 3.3.1, β2 
  > β1 

  . 

If the consumer’s heterogeneity parameter β is kept constant, the perceived expected 

utility when she is ill-informed will be higher than that when she is well-informed. As a 
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Table 3.1.: List of variables in the model 

u(x; q, β) realized consumer utility 

x amount of risky behavior 

q quality of the security software 

β consumer heterogeneity 

t consumer group. 1 for ill-informed and 2 for well-informed. 

q̃t quality signal for consumer group t 

g(q; s) quality signal for ill-informed consumer (q̃1) 

s amount of bias in quality signal 

σt proportion of the market with consumer group t 

rt subjective probability of the signal being biased for group t 

Ũ  
t maximized perceived expected utility of consumer group t 

m(q) quality term in U  
t 

nt(s, rt) information uncertainty term in U  
t 

p price of the security software 

π profit of the vendor 

result, the cutoff βt 
  to purchase the product is lower for the ill-informed. Following that, 

the total demand function can be defined as: 

2 

D(p, q) =  σt (1− β   ) ,t 
t=1 

which the vendor uses to maximize profit by choosing p and q. Two scenarios are possible 

with respect to demand. One scenario is that only the ill-informed consumers (t = 1) will 
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purchase the product; this happens when β  = 1. In the other scenario, both consumer2 

segments purchase the product. In order to characterize the equilibrium, we define 

t σt 
t =1 n (s,r )t tWt = t , and (3.4) 

t =1 σt 
τ 

W (s, r1, r2, σ) =  Wt|t ∈ argmax σt W−1 . (3.5)τ 
τ 

t =1 

We refer to the term W (s, r1, r2, σ) as the aggregated distrust factor and will interpret it in 

the following Lemma. Given the definition, we characterize the equilibrium of the game as 

follows. 

Proposition 3.4.1 The optimal vendor profit and optimal quality are non-zero, finite, unique, 

and continuous in all the parameters s, rt, and σt. The equilibrium price is: 

m(q  )
p   ∈ ,

2W (s, r1, r2, σ) 

and it is unique iff W (s, r1, r2, σ) is a singleton. If W (s, r1, r2, σ) =  W1, only the ill-

informed consumers are served; if W (s, r1, r2, σ) =  W2, both well- and ill-informed 

consumers are served. The implicit function that finds the unique optimal quality is 

m (q  ) t 

σt W−1 − c (q   ) = 0 if Wt ∈ W (s, r1, r2, σ). 
4 t 

t =1 

This proposition highlights the benefit of defining the aggregated distrust factor. It 

shows that in our framework, the equilibrium behavior of the vendor can be simply ex-

pressed as a function of the aggregate distrust factor. Importantly, any parameters that 

define the information structure of the quality only influence the vendor through this factor. 

Next, before we understand how the equilibrium changes with various exogenous pa-

rameters, we focus on explaining the aggregate distrust factor term, W (s, r1, r2, σ). The ex-

planation is clearer if one understands how the exogenous parameters affect W (s, r1, r2, σ). 

Lemma 3.4.1 Wt ∈ W (s, r1, r2, σ) is non decreasing in rt and non increasing in σ. 

With respect to s, the function decreases when W (s, r1, r2, σ) =  W1 but may increase 

or decrease when W (s, r1, r2, σ) = W2. 
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Note specifically how the variation is with respect to the bias. First, consider the case 

where only the ill-informed consumers serve the market. As the bias increases, n1(s, r1) 

increases, and so the trust that ill-informed consumers place in the software increases. 

Hence, a larger market share of ill-informed consumers purchases the product. Since this 

1term n1(s, r1) enters the W1 inversely as follows W1 = 
n1(s,r1) 

, we claim that the term 

σ1 σ2W (s, r1, r2, σ) accounts for the distrust. Next, after observing that W2 = 
n1(s,r1) 

+ 
n2(s,r2) 

when both consumer segments purchase the product, we extend our interpretation to this 

case also. Here, the notion of trust is weighted in proportion to consumer segments, 

thus the term aggregate distrust factor. Because the factor n2(s, r2) makes well-informed 

consumers more cautious, the distrust factor only increases when both consumer segments 

are present. Relatedly, if ill-informed consumers dominate the market (i.e., σ → 1), the 

term W (s, r1, r2, σ) decreases with respect to s. On the opposite end, if the well-informed 

consumers dominate the market (i.e., σ → 0), the term W (s, r1, r2, σ) increases. 

Explaining the effects of rt and σ on W (s, r1, r2, σ) is straightforward. A higher rt 

implies that consumers are more suspicious of the observed quality. Therefore, the distrust 

factor W (s, r1, r2, σ) naturally increases as a consequence. When σ increases, a larger 

proportion of consumers perceive overestimated quality. With debiasing, it implies that 

consumers as a whole will be more trustful of the product. Hence, the value of the distrust 

factor decreases. Now, we use the results of these sensitivity analyses to consider the effect 

of the exogenous parameters on the equilibrium. 

Theorem 3.4.1 When the parameters change, the following hold at the equilibrium. 

1. If rt increases (equivalently, decreases): the quality and the profit decrease (in-

crease); if the price is a singleton, it also decreases (increases). 

2. If σ increases (decreases): the quality and the profit increase (decrease); if the price 

is a singleton, it also increases (decrease). 

3. If s increases: the profit, quality, and price may decrease. 

The implication of the change in the amount of bias, s, on the vendor’s profit is specifi-

cally insightful. The conventional wisdom usually suggests that the vendor always benefits 
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from the presence of information asymmetry. Some even suspect that the vendor promotes 

uncertainty for its own benefit. In contrast with popular belief, we do not find it to be 

necessarily true. Under certain circumstances, such as the case where the population of the 

ill-informed consumers is sufficiently large, the vendor indeed enjoys higher profit as the 

bias increases. However, under other circumstances, such as the case where ill-informed 

consumers are not sufficiently sensitive to the bias, the vendor could actually be worse off 

when the bias increases. We next explain how price, quality, and profits change with bias. 

Note that the effect of s on price, quality, and profits can be either positive or negative. 

If the vendor serves only ill-informed consumers (i.e., W (s, r1, r2, σ) = W1), the effect of 

increasing s is equivalent to the effect of increasing σ since it only increases the overall 

consumers’ perception on software quality. Therefore, at the margin, not only the vendor’s 

choice of quality and price, but the vendor’s profits also increase. This corresponds to the 

conventional wisdom mentioned in the previous paragraph. However, when both segments 

of consumers are in the market, an increase in s may no longer be straightforward as in 

the previous scenario. Consider specifically when the portion of ill-informed consumers is 

sufficiently low. Then, an increase in s negatively affects consumers’ average perception 

instead (because of the debiasing). Therefore, at the margin, the value for the vendor from 

increasing the quality decreases – leading to a decrease in equilibrium price, quality, and 

profits. 

Specifically with respect to the variation of quality, we wish to highlight the Akerlof’s 

lemon market-like effect ((Akerlof, 1970)) that can occur. When a large number of well-

informed consumers exist in the market, they lose trust in the software quality because of 

bias. This tends to decrease the W (s, r1, r2, σ) term, and so the vendor’s incentive to pro-

vide high quality decreases. It is the equivalent of the vendor offering only “lemons.” The 

implication of the “Akerlof-like effect” is clearer with regard to the welfare implications. 

The other effects identified in the theorem are fairly straightforward. Note that an 

increase in consumer suspicion (rt) negatively affects the equilibrium price and quality. At 

the margin, the value from increasing quality decreases. This also means that the consumer 

surplus that can be extracted as profit decreases. On the other hand, an increase in the 



� �� � �

� �� � ���� � �� �

88 

proportion of ill-informed consumers (σ) has the opposite effect. When σ increases, more 

consumers observe positively biased software quality. Therefore, the vendor’s marginal 

value from increasing the quality is higher. As a result, the software quality is higher and 

the price is also higher. For the same reason, the profit is also higher. 

3.4.2 Welfare Implications 

In this subsection, we analyze the implication of information uncertainty in consumer 

surplus and social welfare. For consumer segment t, the consumer surplus is defined as: 

β∗(p,q) 1t 

CS = σt Uno(β) +  (u(x   ; q, β)− p) dβ .t 
0 β∗(p,q)t=1,2 t 

Social welfare is the sum of the vendor profit, π(p   , q   ), and the consumer surplus, CS: 

SW = CS + π(p   , q    ). 

Next, we examine the welfare implications at the individual consumer level before 

aggregating. We begin by considering the variation with respect to the amount of bias 

s. We can separate the variation into three terms, where each corresponds to a different 

effect. Specifically, the variation of consumer utility with respect to s can be expressed as 

follows: 

     ∂u(x ; q, β) ∂u(x ; q, β) ∂x  ∂u(x ; q, β) ∂q  ∂u(x ; q, β) ∂q  ∂x  
t t t t t t = + + .(3.6)
∂s ∂x ∂s ∂q ∂s ∂x ∂s ∂q 

Peltzman-like effect Akerlof-like effect Interaction effect 

In the first term, the Peltzman-like effect captures the consumer engaging in a suboptimal 

level of risky behavior because of quality misperception. For the well-informed (equiv. 

ill-informed), that effect is positive (resp. negative). As regards the second part of the first 
tterm, ∂x

∂s 

∗ 

, notice that increasing s decreases (resp. increases) x. Hence, the first term is 

always negative, independent of the consumer segment. 

The second term accounts for the Akerlof-like effect. The part, ∂q
∂s 

∗ 
, corresponds to 

change in software quality because of bias. It can be both positive and negative, depending 

on whether the aggregated distrust factor W increases or decreases with respect to s. The 
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first part, however, is always positive. As a result, the second term is overall positive if and 

only if ∂q
∂s 

∗ 
is positive. 

As evident, the last term captures the interaction of the two effects and includes three 

tparts. The last part ∂x
∂q 

∗ 

is always positive. The other two parts correspond to the previous 

two paragraphs. The overall term captures how the consumers’ choice of risky behavior 

is affected by the change in security software quality caused by the Akerlof-like effect 

and ends up changing the Peltzman-like effect as a result. For instance, if the quality 

increases as s increases (i.e., ∂q
∂s 

∗ 
> 0), the perceived quality is further higher, prompting 

the consumers to choose a larger x   
t . Consequentially, the realized utility of ill-informed 

consumers decreases because their choice of xt 
  becomes further away from the true opti-

mal point, which they would have chosen had they know the true quality of the security 

software. For the well-informed ones, the same logic leads to increased realized utility. 

Note that a similar set of insights can also be obtained for other exogenous parameters, 

except for some slight changes. For example, the first term is zero when considering the 

variation with respect to the proportion of ill-informed consumer σ. These effects when 

combined across consumers provide insights about consumer surplus. 

Next, we investigate the change in social welfare, and also the vendor profit, with 

respect to s. In that regard, recall that there is a case where the equilibrium price is a 

doubleton. For the sake of simplicity, we present here the change in the social welfare with 
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respect to the change of s when the price is a singleton. Note that qualitatively similar 

results can also be established when the price is not a singleton. 

∂SW 1 ∂u(x   ; q  , β) ∂x  

= σt
t t dβ 

∂s β∗ ∂x  
t ∂s 

t=1,2 t 

Peltzman-like effect 

∂q  1 ∂u(x   ; q  , β)
+ σt

t dβ − c (q   )
∂s β∗ ∂q  

t=1,2 t 

Akerlof-like effect 
1 ∂q  ∂u(x   ; q  , β) ∂x  

+ σt 
t t dβ 

β∗ ∂s ∂x  
t ∂q  

t=1,2 t 

Second order effect (
∂β  ∂β  ∂q  ∂β  ∂p  

t t t  − σt + + u(x ; q   , β    ) (3.7)
∂s ∂q  ∂s ∂p  ∂s t t 

t=1,2 

Demand change 

Compare with individual utility, two additional components enter the equation in study-

ing the variation of the social welfare with respect to s. One is the marginal cost term 

interacting with the Akerlof-like effect. That is because when the quality changes, the 

cost incurred by the vendor also changes. The second change is the shift in demand. 

When s changes, both due to the Peltzman-like effect and Akerlof-like effect, the purchase 

decisions of the consumers change. With s increasing, ill-informed consumers tend to pur-

chase more, while well-informed consumers purchase less. When quality increases, both 

consumer segments tend to purchase the product more. The demand change aggregates 

these effects. 

Theorem 3.4.2 Social welfare can increase with the amount of bias. 

The Peltzman-like effect, as pointed out earlier, negatively impacts social welfare. From 

the traditional perspective, the Akerlof-like effect can lead to market failures; hence, by 

extrapolation, one may interpret its effect as also decreasing social welfare. For these 

reasons, we expect the bias to have a negative impact on consumer and social welfare 

metrics. In that regard, the theorem may seem counterintuitive. 

Our analysis finds that the bias may have a positive impact on social welfare because 

of the Akerlof-like effect. It allows ill-informed consumers to further overestimate the 
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quality, which decreases the aggregated distrust factor. This in turn leads to well-informed 

consumers also purchasing more. Consequently, the vendor has an incentive to marginally 

improve the software quality. Thus, the social welfare may improve. Additionally, the 

second order effect term identified in Equation 3.7 may contribute positively to social 

welfare also – for example, if the proportion of ill-informed consumers is small and the 

Akerlof-like effect is positive. When both these effects are combined, bias creates a positive 

impact on social welfare. 

Since we do not capture the welfare parameters in reduced form expressions, our next 

objective is to provide insights based on some numerical simulations. Figure 3.2 plots the 

changes to vendor profit, consumer surplus, and social welfare with respect to the bias for 

two specific values of σ. One can see that s = 0 yields the optimal social welfare when 

σ is small (in Figure 3.2(a)), but that is not the case when σ is large (in Figure 3.2(b)). 

These results can be readily understood from Equations 3.6 and 3.7. Note that when s 

increases, ill-informed consumers contribute to social welfare through the Akerlof-like 

effect by exhibiting higher trust in the quality but undermine it because of the Peltzman-like 

effect by over-exerting risky behavior. When σ is large as in Figure 3.2(b), it corresponds 

to more consumers receiving (upwardly) a biased signal. For that case, when s is relatively 

small, the Akerlof-like effect dominates, and the increment in s only improves the welfare. 

In contrast, when σ is small as in Figure 3.2(a), most of the consumers observe an unbiased 

signal. They debias the signal even more if s increases, which harms the social welfare 

through the Akerlof-like effect. In addition, their choice of risky-behavior also becomes 

further from optimal. Thus, in the case where σ is small, a larger s does society no good. 

In addition to the change in social welfare with respect to s, Figure 3.3 shows the 

variation of social welfare when both s and r change. Recall that r represents the subjective 

probability of the signal being biased. When r is small, consumers are naive in the sense 

that they believe the signal that they observe. As a result, they do not put much weight 

on debiasing the signal. In such a case, the change in s mostly influences ill-informed 

consumers, and thus the increase in s can raise the social welfare because the Akerlof-like 

effect is dominant. On the other hand, with a large r, consumers are suspicious of the 
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(a) (b) 

Figure 3.2.: The changes in consumer surplus, the vendor surplus, and the social welfare 

with respect to the amount of bias. 

√ 
The utility function is u(x; β, q) =  βqx − λx and the quality perception is q̃1 = q(s +1). 

The cost function is c(q) =  kq2 . σ = .2 and r1 = r2 = .5 for the first and σ = .6 and 

r1 = r2 = .2 for the second graph. Other parameters are set to be k = .1 and λ = .05. 

signal that they observe and put more weight on debiasing. Hence, an increase in s mostly 

affects well-informed consumers and thus fails to improve social welfare. In addition, we 

also observe that at the point where r is equal to σ, social welfare does not increase when 

s increases. The following theorem proves another associated result. 

Theorem 3.4.3 There exist scenarios where social and consumer welfare are higher with-

out security software in the market. 

This is an interesting result. In the previous explanations, we explained how the Akerlof-

like effect moderates the negative impact on social welfare because the value of the aggre-

gated distrust factor decreases. Also, we explained how having some bias can improve 

social welfare. However, when both the amount of bias and the proportion of overesti-

mating consumers are large, social welfare can be worse than without any market. Figure 

3.4 illustrates the same phenomenon. The first two graphs represent social welfare, while 

the last two graphs represent consumer surplus. The dark gray area corresponds to the 

case where the welfare parameters are higher if security software exists, while the light 
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(a) (b) 

Figure 3.3.: The social welfare evaluated with parameters s and r. 

Note: r1 = r2 = r is assumed. The utility function, the quality perception, and the cost 

function are the same as fig 3.2. σ = .5 for (a) and σ = .9 for (b). Other parameters are set 

equal to fig 3.2. 
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(a) Social welfare, rt = 0.1 (b) Social welfare, rt = 0.5 

(c) Consumer surplus, rt = 0.1 (d) Consumer surplus, rt = 0.5 

Figure 3.4.: The parameter region where the social welfare is larger with the market or 

without the market. 

√ 
Note: The utility function is u(x; β, q) =  βqx − λx. The quality perception is q̃1 = 

q(s+1). The cost function is c(q) =  kq2 . The other parameters are set to be k = .1, λ  = .05 

gray region represents the case where the welfare parameters are actually lower if there is 

security software in the market.7 

7One might wonder whether the results from Theorem 3.4.3 hold if we model a strategic hacker. Let 
e(q, D(p, q)) be hackers’ effort level, which is a function of the quality of security software and the mass 
of protected consumers. For simplicity, assume linear relationship e(q, D(p, q)) = αq + βD(p, q). As the 
consumer and social welfare are continuous functions, it is obvious that there exists some small α and β that 
the existence in Theorem 7 still holds. This may change the parameter region of which such a case arises, but 
we can still show that such a case exists. 
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3.5 Generalizations 

In this section, we relax several assumptions from the main model and discuss results. 

3.5.1 Multiple Consumer Segments 

In our main model, we simplify consumers’ observation of security software quality by 

assuming only two types of signals, biased and accurate signals. As a result, consumers 

belong to one of the two segments, ill- and well-informed. In this subsection, we relax 

such an assumption by allowing more than two types of signals. Let there be T consumer 

segments each identified by t = 1, . . . , T  and occurring in proportions σt, where T
t = t=1 σ 

1. Define σ = {σ1, . . . , σT }. The quality perceived by consumers in each segment is 

q̃t = gt(q; st). Let s = {sτ }τ =1,...,T be a vector of the amount of bias each segment 

observes. For ease of representation, assume that the consumer segments are sorted in 

terms of bias. Specifically, we assume that a larger t implies less bias. By construction, 

gt(q; st) > gt (q; st ) for ∀t < t . Let rt = {rtτ }τ=1,...,T be a vector of the weight that 

consumer segment t puts on believing that he belongs to segment τ and, in that case, the 

−1 τ −1debiased quality is gτ (q̃t; sτ ). Therefore, Ũ 
t 
  = maxx 

T
τ=1 rt u(x; gτ (q̃t; sτ ), β). As  in  

our main model, we further assume that the expected perceived utility can be separated into 

two terms: Ũ  = βm(q)nt(s, rt). Here, nt(s, rt) is smaller for larger t (i.e., nt(s, rt) >t 

nt (s, rt )∀t < t ), which is consistent with the influence of the information uncertainty 

being smaller for more well-informed consumers. Similar to Equations 3.4 and 3.5, we 

define: 
t σt 
t =1 n (s,r )t tWt = t , and 

t =1 σt 
τ 

W (s, {rt}t=1,...,T ,σ) =  Wt|t ∈ argmax σt W−1 .τ 
τ 

t =1 

The main difference is that instead of point values, we now use vectors as parameters of 

the functions. The equilibrium price similarly is: 

m(q  )
p   ∈ ,

2W (s, {rt}t=1,...,T ,σ) 
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and it is unique iff W (s, {rt}t=1,...,T , σ) is a singleton. If W (s, {rt}t=1,...,T , σ) =  Wc, 

then only consumer segments t = 1, ..., c purchase the product but not the segments t = 

c+1, ..., T . As before, however, the optimal vendor profit and optimal quality are non-zero, 

finite, unique, and continuous in all the parameters. 

We can interpret W (s, {rt}t=1,...,T , σ) as before. The term Wc expresses the weighted 

average of 1 , where the weights correspond to the proportions of consumer segments 
n (s,r )t t 

in the market. The term ( t
c 
=1 σt ) represents the market size of the consumers of the 

segment t = 1, ..., c. The variations of the aggregated distrust factor, W (s, {rt}t=1,...,T , σ), 

with respect to the exogenous parameters are also mostly the same. Hence, the results in 

the main model hold regarding the price, quality, vendor profit, and welfare metrics with 

respect to exogenous parameters even with multiple consumer segments. 

3.5.2 Ill-Informed Consumers Underestimate Software Quality 

Earlier, we assume that ill-informed consumers observe a signal with only a positive 

bias (i.e., they are overly optimistic about the security protection from the software). In 

this subsection, we allow the bias to be negative (i.e., ill-informed consumers are now pes-

simistic about the quality of the security software and are not appreciative of the software). 

Suppose ill-informed consumers perceive the quality of the software to be worse than its 

actual quality. In other words, q̃1 = g(q; s) < q  = q̃2. Let ∂g < 0.
∂s 

Note that, as before, the consumers try to debias the perceived quality of the security 

software. However, in this case, they suspect that the actual quality may be higher, as 

opposed to lower, than the signal q̃t they receive. As a result of debiasing upward instead 

of downward, the well-informed consumers exhibit higher perceived expected utility than 

the ill-informed ones. Symmetric to the main model, if the bias size s becomes larger, well-

(ill-)informed consumers’ perceived expected utility shifts higher (lower). In the abstract 

sense, similar to the main model, it results in one segment exhibiting larger demand while 

the demand is smaller for another segment. For these reasons, all of our main results remain 

qualitatively similar to the results generated by the main model. 





98 

3.5.4 Endogenous choice of rt 

In the main model, we assumed that the parameter rt, the weight that consumers place 

on the debiased quality, is an exogenous parameter. In this subsection, we discuss an 

extension where rt is endogenized. There are two possible entities in the model that can 

influence rt: the vendor and the consumers. The vendor can possibly influence perceptions 

through warning messages on the software or through articles accessed by the different 

consumer segments. On the consumer side, it is possible that consumers somehow learn 

about the scenario regarding their beliefs. 

If the vendor can manipulate rt, it is obvious that the vendor always prefers rt = 0. 

That is, the vendor wants consumers to believe naively in the perceived quality. On the 

other hand, if every consumer myopically chooses rt, then we can prove that she will find 

it optimal to set rt = σ, independent of the segment she belongs to. In other words, 

consumers weigh their possible biased observation as being equal to the true probability. 

The welfare implications of these cases are not ex ante clear. When rt = σ as opposed 

to rt = 0, consumer loss from the Peltzman-like effect is smaller. However, rt = σ leads 

to lower quality product compared with the case where rt = 0 because the vendor has 

to account for consumer suspicion of the software – the suspicion can be attributed to the 

Akerlof-like effect. To study this further, we conducted a numerical analysis using the same 

utility function as specified in Figure 3.4. 
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Figure 3.6.: The parameter region where the social welfare is larger with rt = 0 or rt = σ. 

√ 
Note: The utility function is u(x; β, q) =  βqx − λx. The cost function is c(q) = kq 

2 

2 
and 

the quality perception is q̃1 = q(s + 1). Other parameters are set to be k = .1, λ  = .05 

Figure ?? demonstrates the social welfare comparison between the two cases. If the 

bias or the proportion of ill-informed consumers is sufficiently large, the society is better 

off when rt = σ compared with rt = 0. However, if both uncertainty parameters are small, 

rt = 0 is better for social welfare. Interestingly, this result demonstrates that the case where 

consumers know the probability of the signal being biased and set rt = σ accordingly is 

not always the social optimal. 

3.6 Discussions and Conclusions 

In the information security context, decisions are often made without a clear under-

standing of the expected losses (because consumers often do not know the probability 

and/or the value of the loss) suffered from breaches. The popular press as well as security 

researchers have even documented this lack of clarity. Yet, prior works on the economics 

of information security have not studied the welfare implications of such uncertainty with 

respect to losses. In this paper, we study how bias in consumers’ estimation of software 

quality impacts welfare outcomes. We do so by developing a game theoretic model. Our 

model has two unique features. First, we model how some users observe signals regarding 



100 

software quality with a positive bias. Second, all users – including the well- and ill-

informed consumers – engage in risky but value adding behavior based on their perception 

of the software’s quality. We compute the equilibrium of our game and, based on that, 

develop insights. 

Our paper is the first to demonstrate an interesting dynamic between two distinctive 

effects – the Peltzmann- and Akerlof-like effects. The Akerlof-like effect, which occurs 

when consumer perception of product quality is uncertain, causes the market to be unsus-

tainable by deincentivizing the vendor in the market to improve quality. The Peltzman-like 

effect drives consumers, who tend to overestimate the software quality, to engage in more 

risky behavior. While those two effects seem to be both harmful to the consumer and social 

welfare, the interaction between them can create surprising results such as when the social 

welfare improves with bias. The reason is that the upward-bias of quality perception due 

to the Peltzman-like effect serves as a beneficial tool. It allows consumers to form a trust 

in the quality of the security software and increases product demand. Consequently, the 

vendor is encouraged to invest in improving the quality, which otherwise might not have 

occurred in a market dominated by the Akerlof-like effect alone. Thus, in cases where 

the loss from suboptimal consumer behavior can be offset by gain from higher quality, the 

larger bias benefits the consumer/social welfare. 

In addition, our research yields many important practical implications at multiple levels. 

At the individual consumer level, our paper highlights the Peltzman effect in the context 

of information security. It models the consumers’ false perception of the software quality 

and the consequently potentially dangerous impact on those purchasing security software. 

Thereby, we account for possible differences between realized and perceived utilities. We 

wish to highlight this difference as many firms in reality continue to believe that simply 

adopting security software automatically yields a higher level of protection. When users 

are overly optimistic about the software’s quality, the loss from the Peltzman-like effect 

may be more severe than having no protection at all. In this regard, we emphasize the 

importance of treating information security holistically by also investing in educating end-

users in addition to implementing the security software. Lastly, for a policymaker, our 



101 

model shows that simply reducing bias might not always benefit society. On the other hand, 

it could actually harm social welfare by collapsing the market. However, a scenario where 

an increase in bias increases social welfare will not occurs if policymakers can educate 

consumers about the informational structure of bias. 

Given that this is the first paper to have studied the welfare implications of information 

uncertainty about losses, we have considered a rather simplistic setting. There are several 

ways in which the model can be extended. An obvious extension is to consider a more com-

petitive market, but we believe that the Peltzmann- and Akerlof-like effects will continue to 

impact welfare. Another extension is to study the issue in the presence of negative network 

externality – an aspect which has been considered in many recent papers using game theory 

to study information security issues. The welfare implications of quality uncertainty in the 

presence of a negative network effect of information security is more difficult to predict. 

Hence, it could be another potential avenue for future research. 
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A. Detail of the simulation in Chapter 1 

The dimension of the product characteristics on utility function Xjt is set to be 2, where the 

first characteristic is constant and the second is randomly generated independently across 

products and periods. The cost side characteristics Yjt includes Xjt and one additional 

characteristic also drawn independently. The characteristics are drawn from a normal 

distribution of mean 0 and standard deviation .1. The unobserved error terms  jt and 

λjt are also drawn from a normal distribution of mean zero and standard deviation 1, 

independently across products and markets. The true values of parameters other than price 

coefficient α are β = (2., 1.) and γ = (3., 0., 1.). Those values are chosen to ensure that 

the marginal cost does not fall below zero, and the resulting share of outside option is not 

too close to zero for the invertibility of Δ. Given the generated characteristics and the 

errors, the prices are simulated by solving the profit maximization problem by sequential 

least square quadratic programming. The results are robust to variety of parameter setting 

and distributional assumption. 
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B. Detail of the estimation procedure in Chapter 1 

B.1 Hyper parameter setting 

The discounting factor β is set to be .9 for dynamic models both on demand and supply 

side. The draw of consumer types is generated from Halton sequence. The number of 

consumer segments is set to be 7. The initial market size Mij1 is defined by the sum of 

the sales over the considered period in the subcategory that j belongs to, divided by the 

number of consumer segments. 

B.2 Converting supply side constraints to FOC 

The equilibrium constraints on supply side includes the retailer’s profit maximization. 

In the estimation, we substitute it by first order condition. Let us define the derivative of 
∂Dm 

ijt the demand function with respect to price, 
∂pjt 

, to be another set of endogenous variable 

of MPEC that represents the derivative of the demand function from a consumer i of a 
∂Dm 

product j at period t evaluated at the realized price. Also define 
∂pjt

jt be a derivative of the 

overall demand function, again at the observed price. In static pricing model, the MPEC 

constraints are converted to: 
∂Dm 

ijt 
= Mm m (1− s m )ijtsijt ijt ∂pjt 

∂Dm 
jt ∂Dijt(pjt)

= 
∂pjt i 

∂pjt 

∂Dm 

Djt(pjt) +  jt 
(pjt − MCjt) = 0

∂pjt 

= XsMCjt jtγ + λjt 

∀(j, t). 
In dynamic pricing model, FOC include a derivative of the value function. In addition 

to the ones above, we define two sets of additional endogenous variables: the realized value 
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function of product j at period t, vjt, and the derivative of value function at next period with 

respect to current price evaluated at the observed price, ∂V
∂p 
jt

jt 

+1 . Then FOC and the Bellman 

equations translate to MPEC constraints: 

∂Djt
m ∂Vjt

Djt(pjt) +  (pjt − MCjt) + β = 0  
∂pjt ∂pjt 

vjt = Djt(pjt − MCjt) + βvjt+1 

∀(j, t). 

As we do not parametrically estimate the value function, the difficulty arises to calculate 

the derivative of the value function. The state variable at t+1 that are influenced by pjt are 

the market size of consumer segments Mijt+1. Thus, define the derivative of the value with 
∂Vjt+1respect to market size, , as another set of endogenous variable. Then, 
∂Mijt+1 

∂Vjt+1 ∂Vjt ∂Mijt+1 
= pjt

∂pjt i 
∂Mijt+1 ∂pjt (
∂Vjt ∂Dijt(pjt)

= − . 
∂Mijt+1 ∂pjti 

We still have to approximate ∂vjt . One methodology is to utilize the estimated values 
∂Mijt+1 

of vjt. The realized value vjt should be equal to the value function evaluated at the realized 

state Ωjt. Therefore, by comparing vjt and Mijt, we are able to infer how value function 

changes with respect to Mijt. In the estimation, we do so by linear approximation such as (
∂Vjt 1 vjt+1 − vjt vjt − vjt−1 

= + . 
∂Mijt+1 2 Mijt+1 − Mijt Mijt − Mijt−1 
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C. Related work to Chapter 2 

This section reviews the previous work on fairness-aware machine learning algorithms.Table 

C.1 compares our algorithm with the existing ones. 

These algorithms can be classified into two categories: Algorithms of the first cate-

gory process datapoints before or after putting them into classifier or regressor. Such an 

Table C.1.: List of fair estimators and their capabilities. 

algorithms categorical 

sensitive 

attrs 

numeric 

sensitive 

attrs 

explanatory 

attrs 

classification regression 

Kamiran et al. (Kamiran and Calders, 2010) � � � � � 

Zliobaite et al. (Zliobaite et al., 2011) � � � � � 

Kamishima et al. (Kamishima et al., 2012b) � � � � � 

Calders et al. (Calders et al., 2013) � � � � � 

Zemel et al. (Zemel et al., 2013) � � � � � 

Fish et al. (Fish et al., 2015) � � � � � 

Feldman et al. (Feldman et al., 2015) � � � � � 

Zafar et al. (Zafar et al., 2017b) � � � � � 

This paper � � � � � 

Note: “Categorical sensitive attrs” indicates that an algorithm can deal with more than 

binary sensitive variables. “Numeric sensitive attrs” indicates that an algorithm can deal 

with continuous sensitive variables. “explanatory attrs” indicates that an algorithm utilizes 

some variables that justify the treatment (e.g. the effect of working hours on wages) 

(Zliobaite et al., 2011). The checkmark indicates the capability of the algorithm in the 

corresponding aspect. 
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algorithm typically transforms training datasets so as to remove any dependency between 

the sensitive attribute and target attribute. The advantage of these algorithms is generality: 

they can be combined with a larger class of off-the-shelf algorithms for classification and 

regression. Moreover, the transformed data can be considered as a “fair representation” 

(Feldman et al., 2015) that is free from discrimination. The biggest downside of these 

algorithms that they treat a classifier as a black-box, and as a result, they need to change 

the datapoints drastically, which tends to reduce accuracy. Regarding the algorithms of this 

category, Kamiran et al. (Kamiran and Calders, 2010) proposed a data-debiasing scheme 

by using a ranking algorithm. They were inspired by the idea that the datapoints close 

to the class borderline are prone to discrimination, and they resample datapoints so as 

to satisfy fairness constraints. Zliobaite et al. (Zliobaite et al., 2011) argued that some 

part of discrimination is explainable by some attributes. They also proposed resampling 

and relabelling methods that help in training fair classifiers. Zemel et al. (Zemel et al., 

2013) proposed a method to learn a discrete intermediate fair representation. Feldman et 

al. (Feldman et al., 2015) considered a quantile-based transformation of each attribute. 

Hardt et al. (Hardt et al., 2016) studied the condition of equalized odds, and provided a 

post-processing method that fulfills the condition. 

Algorithms of the second category directly classify or regress datapoints. Such algo-

rithms tend to perform well in practice since they do not need to conduct explicit data 

transformation that loses some information. The downside of these algorithms is that 

one needs to modify an existing classifier for each task. Regarding the algorithms of 

this approach, Ristanoski et al. (Ristanoski et al., 2013) proposed a version of support 

vector machine (SVM), called SVMDisc, that involves a discrimination loss term. Fish et 

al. (Fish et al., 2015) shifted the decision boundary of the classical AdaBoost algorithm 

so that fairness is preserved. Goh et al. (Goh et al., 2016) considered a constrained 

optimization that satisfies various constraints including the one of fairness. Kamishima 

et al. (Kamishima et al., 2012b) proposed prejudice index and proposed a regularizer to 

reduce prejudice. Zafar et al. (Zafar et al., 2017b) considered a constrained optimization 
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for classification tasks that maximizes accuracy (resp. fairness) subject to fairness (resp. 

accuracy) constraint. 

Our two-stage approach lies somewhere between the data preprocessing approach and 

direct approach. The first stage of 2SDR transforms datasets to make the classifier or 

regressor in the second stage fair. Unlike most data preprocessing algorithms, the trans-

formation of the first stage in 2SDR conducts the minimum amount of transformation 

that is primarily intended for linear algorithms, and thus, it does not degrade the original 

information by much. Moreover, any class of linear algorithm can be used in the second 

stage, and as a result our algorithm can handle more diverse range of tasks and conditions 

than the existing algorithms can. 

Note that other tasks have been considered in the literature of fairness-aware machine 

learning. To name a few, Kamishima et al. (Kamishima et al., 2012a; Kamishima et al., 

2016) considered methods for removing discrimination in recommendation tasks. Joseph 

et al. (Joseph et al., 2016) considered fairness in the context of online content selection. 

Bolukbasi et al. (Bolukbasi et al., 2016) considered fairness in dense word representation 

learnt from text corpora. 
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Table D.1.: List of regression or classification datasets. 

datasets Regression 

or Classifi-

cation 

D N 

Adult Classification 49 45,222 

Communities & Crime (C&C) Regression 101 1,994 

Compas Classification 12 5,855 

German Classification 47 1,000 

LSAC Classification 24 20,798 

Note: D is the number of binary or numeric attributes (after expanding unordered 

categorical attributes into dummies (i.e., set of binary dummy attributes)), and N is the 

number of datapoints. 

D. Summary of the datasets in the main analysis of Chapter 2 

Table D.1 summarizes the datasets used in the main analysis. 

D.1 Other Datasets in Chapter 2 

Furthermore, we conducted additional experiments on two other datasets (Table D.2). 

The ProPublica Compas dataset (Angwin et al., 2016) is a collection of criminal offenders 

screened in Broward County, Florida during 2013-2014, where x is a demographic and 

criminal record of offenders and y is whether or not a person recidivated within two years 

after the screening. We set sex as the sensitive attribute s. The Law School Admissions 
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Table D.2.: Results for the Compas and LSAC datasets. 

Algorithm (Dataset) P%-rule Accuracy 

OLS (Compas) 0.59 0.73 

2SDR (Compas) 0.92 0.73 

OLS (Compas-R) 0.19 0.65 

2SDR (Compas-R) 0.93 0.65 

OLS (LSAC) 0.21 0.75 

2SDR (LSAC) 0.86 0.73 

Note: We balanced training data by resampling in LSAC dataset to cope with class 

inbalance problem. Compas-R is a version of the Compas dataset where predictive 

attributes are dropped: In this version, we dropped the attributes of the original dataset 

whose correlation with y was stronger than 0.3. This significantly reduces the prediction 

accuracy and fairness of the OLS estimator which tries to utilize the available information 

as much as possible. Unlike OLS, the fairness of 2SLS does not decrease even if these 

attributes are dropped. 

Council (LSAC) dataset 1 is a survey among students attending law schools in the U.S. 

in 1991, where y indicates whether each student passed the first bar examination. We 

set whether or not the race of the student is black as the sensitive attribute. Similar to 

the German dataset, we used 2/3 (resp. 1/3) of the datapoints as training (resp. testing) 

datasets, and results are averaged over 100 runs. The results, shown in Table D.2 implies 

that 2SDR complies with the 80%-rule with an insignificant deterioration in classification 

performance on these datasets. 

1http://www2.law.ucla.edu/sander/Systemic/Data.htm 

https://1http://www2.law.ucla.edu/sander/Systemic/Data.htm
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Table E.1.: Performance of 2SDR on the Adult dataset where s is (sex, age). 

Algorithm P%-rule CC Accuracy 

OLS 0.30 0.22 0.84 

2SDR 0.65 0.10 0.82 

Note: We show p%-rule (resp. correlation coefficient, CC) with respect to sex (resp. age). 

Both fairness criteria are improved by using 2SDR. 

E. Other settings 

This section shows results with several other settings. 

Multiple s: Here, we report the result for multiple sensitive attributes. Table E.1 lists 

the results for the Adult dataset, where s is sex (binary) and age (numeric). One can see 

that (i) 2SDR reduces discrimination for both of sensitive attributes with a very small dete-

rioration on the classification performance, and (ii) the power of removing discrimination 

is weaker than in the case of applying 2SDR to a single s. 

Effect of ordinal transformation: The method proposed by Feldman et al. (Feldman 

et al., 2015) conducts a quantile-based transformation. We have also combined the trans-

formation with 2SDR. Let xi,(k) be the k-th attribute in xi. A quantile-based transformation 

maps each attribute xi,(k) into its quantile rank among its sensitive attributes si: 

j∈{1,2,...,n}:si =sj 
I[xi,(k) > xi,(k)]

Ranki,k = . (E.1)|{j ∈ {1, 2, . . . , n} : si = sj }| 
Feldman et al. (Feldman et al., 2015) showed that the dependence between xi,(k) and s can 

be removed by using such a quantile-based transformation (c.f. Figure 1 in Feldman et al. 

(Feldman et al., 2015)). Table E.2 and E.3 list the results of applying the transformation 
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Table E.2.: Classification results for the Adult dataset, with or without the ordinal 

transformation of Eq. (E.1). 

Without ordinal trans. With ordinal trans. 

Algorithm P%-rule Accuracy P%-rule Accuracy 

OLS 0.30 0.84 0.29 0.83 

2SDR 0.83 0.82 0.82 0.82 

OLS (cont. only) 0.22 0.81 0.06 0.80 

2SDR (cont. only) 0.88 0.79 0.87 0.78 

Note: “With ordinal trans.” (resp. “Without ordinal trans.”) indicates an ordinal 

transformation is conducted (resp. is not conducted) for each attribute. ”cont. only” 

indicates that non-numeric attributes in x are discarded beforehand. 

Table E.3.: Regression results for the C&C dataset. 

Without ordinal trans. With ordinal trans. 

Algorithm MD RMSE MD RMSE 

OLS 0.22 0.14 0.23 0.16 

2SDR 0.02 0.18 0.02 0.19 

of Eq. (E.1) for each non-binary attribute. Applying an ordinal transformation slightly 

decreased accuracy (or increased RMSE in regression), as it discards the modal information 

on the original attribute. 
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Table E.4.: Classification result of 2SDR combined with logistic regression. 

Algorithm dataset P%-rule Accuracy 

2SDR Adult 0.72 0.83 

2SDR German 0.80 0.73 

Generalized linear models: We also tried logistic regression in the second stage 

classifier. Logistic regression is a binary classification model that assumes the following 

relation between the attributes xi and target yi: 

1 
P[yi = 1|xi] =  , (E.2)−x βi1 + e 

where β is the model parameter to be learnt. Table E.4 shows the results of classification 

when we replaced the second-stage classifier with the logistic regression. Compared with a 

linear model (Ridge classifier), this yielded a lower p%-rule in the Adult dataset. This fact 

is consistent with Theorem 2.4.2. It states that u is asymptotically uncorrelated to s: How-

ever, a non-linear map such as the sigmoid function in Eq. (E.2) can cause bias between 

the mapped u and s. We should also note that the more involved non-linear second stage 

classifiers, such as naive Bayes classifiers, support vector machines, and gradient boosting 

machines, resulted in a significantly lower p%-rule than logistic regression because of their 

strong non-linearity. 
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F. Proof of Lemmas and Propositions in Chapter 3 

F.1 Proof of Lemma 3.3.1 (on Page 82) 

Lemma 3.3.1 For a given β, the perceived expected utility is higher for the ill-informed 

consumer than for the well-informed one. Hence, the market share from the well-informed 

consumers is smaller than or equal to that from ill-informed ones. That is, Ũ1 > Ũ2 and 

β   
2 ≥ β1 . 

Proof We prove the first part initially: 

Ũ1 = (1− r1)u(x; q̃1, β) + r1u(x; g −1(q̃1; s), β) 

= (1− r1)u(x; g(q; s), β) + r1u(x; q, β) 

> (1− r1)u(x; q, β) + r1u(x; q, β) 

= u(x; q, β) 

= (1− r2)u(x; q, β) + r2u(x; q, β) 

> (1− r2)u(x; q, β) + r2u(x; g −1(q; s), β) 

= (1− r2)u(x; q̃2, β) + r2u(x; g −1(q̃2; s), β) 

˜= U2. 

Both inequalities hold because the utility is increasing in quality and g−1(q; s) < q <  

g(q; s). It proves the first part of the lemma. Next, 

˜ ˜     ˜maxU1 = U1(x1) > Ũ1(x2) > Ũ2(x2) = maxU2. (F.1) 
x x 

The first inequality comes from the unique optima and the second is from the first part of 

the lemma. 

Given Equation F.1, it is obvious that β2 
  > β1 

  since 

     Uno(β1 ) = Ũ1(β1 , q) > Ũ2(β1 , q), 
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which means that a consumer whose β is at β1 
  does not purchase the product if she belongs 

to t = 2. 

F.2 Proof of Lemma 3.3.2 (on Page 83) 

Lemma 3.3.2 m(q) is a continuous, differentiable, and strictly increasing function of q. 
∂n1(s,r1) > 0; ∂n2(s,r2)nt(s, rt) is a continuous and differentiable function of s and rt. < 0;

∂s ∂s 

and ∂nt(s,rt) ≤ 0 for t = {1, 2} but the inequality is strict only if s >  0. The utility from not 
∂rt 

purchasing the security software, Uno(β) = 0 for any β. 

Proof Recall that from Equation 3.3, we have 

βm(q)nt(s, rt) = max Ũ 
t = Ũ  (F.2) t 

x 

Ũt = (1− rt)u(x; q̃t, β) + rtu(x; g −1(q̃t; s), β). (F.3) 

It is clear that the function on the right hand side is a continuous differentiable function of 

q, s and rt. Therefore, we can apply the envelope theorem to imply that m(q) and nt(s, rt) 

are continuous and differentiable. 

To compute ∂nt(s,rt) , we invoke the envelope theorem, Following that, 
∂s 

∂Ũ  ∂u(x   
1; g(q; s), β) ∂g(q; s)1 = (1− r1) . 

∂s ∂q ∂s 

∂u(x ;g(q;s),β)1Note that, by assumption, 
∗ 

> 0 and ∂g(q;s) > 0. Consequently, because of 
∂q ∂s 

Equation F.2, ∂n1(s,r1) > 0. The proof is similar to establishing that ∂n2(s,r2) < 0 because
∂s ∂s 

∂g−1(q;s) < 0.
∂s 

If s = 0, for t = {1, 2}, we can also apply the envelope theorem: 

∂Ũ  
t    

∂rt 
= −u(xt ; q̃t, β) + u(xt ; g −1(q̃t; s), β). 

∂Ũ ∗ 
tBecause u(x, q, β) is a strictly increasing function of q and q̃t > g−1(q̃t; s), ∂rt 

< 0. 

Hence, ∂nt(s,rt) < 0.
∂rt 
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Next, we prove that Uno = maxx u(x; 0, β) = 0. Since m(0) = 0 by assumption, 

βm(0)n2(s, r2) = 0 = max  r2u(x; g −1(0; s), β) + (1  − r2)u(x; 0, β) ≤ max u(x; 0, β)
x x 

βm(0)n1(s, r1) = 0 = max  (r1u(x; 0, β) + (1  − r1)u(x; g(0; s), β)) ≥ max u(x; 0, β)
x x 

0 ≤ maxx u(x; 0, β) ≤ 0. Thus, maxx u(x; 0, β) = 0. 

F.3 Proof of Proposition 3.4.1 (on Page 85) 

Proposition 3.4.1 The optimal vendor profit and optimal quality are non-zero, finite, unique, 

and continuous in all the parameters s, rt, and σt. The equilibrium price is: 

m(q  )
p   ∈ ,

2W (s, r1, r2, σ) 

and it is unique iff W (s, r1, r2, σ) is a singleton. If W (s, r1, r2, σ) =  W1, only the ill-

informed consumers are served; if W (s, r1, r2, σ) =  W2, both well- and ill-informed 

consumers are served. The implicit function that finds the unique optimal quality is 

m (q  ) t 

4 
σt W−1 − c (q   ) = 0  if Wt ∈ W (s, r1, r2, σ).t 

t =1 

Proof ⎧ ⎪⎪⎪⎪⎪  

⎪⎪⎪⎪⎪⎩ 

p (1 − σ)(1 − p p − c(q) if 0 < p ≤ m(q)n2(s, r2)m(q)n2(s,r2) 
) +  σ(1 − 

m(q)n1(s,r1) 
) 

π = pσ 1 − p if m(q)n2(s, r2) < p ≤ m(q)n1(s, r1) 

−c(q) if p > m(q)n1(s, r2). 

m(q)n1(s,r1) 
− c(q) 

The profit function is clearly a continuous function. We then demonstrate that the equi-

librium price and quality are bounded. Recall that the feasible ranges are q ∈ [0,∞) and 

p ∈ [0,∞). If  p > m(q)n1(s, r1), π ≤ 0 with the inequality being strict for q >  0. Now,  

consider q = �> 0 and p = m(q)n2(s, r2). Then, 

π = σn2(s, r2)m( ) 
n2(s, r2)

1 − 
n1(s, r1) (

(
− c( ) 

∂π n2(s, r2)
= σn2(s, r2)m ( ) 1 − − c ( ). 

∂� n1(s, r1) 
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Recall that lim →0 c ( ) = 0. From Lemma 3.3.2, lim →0 m ( ) > 0. Therefore lim →0 
∂π >
∂� 

0. It implies that there exists an �> 0 such that π >  0. Hence, p   ≤ m(q)n1(s, r1). 

For a given  q, π ≤ m(q)n1(s, r1) − c(q) because p   ≤ m(q)n1(s, r1) and D(p, q) ≤ 1. 

Note that, by assumptions that m(q) is concave and c(q) is convex in q, m(q)n1(s, r1) − 

c(q) is strictly concave in q. Also, from the assumptions, m(0)n1(s, r1) − c(0) = 0, 

m (0)n1(s, r1) − c (0) > 0, and limq→∞ m(q)n1(s, r1) − c(q) =  ∞. It implies that q̄ >  0, 

m(q̄)n1(s, r1) − c(q̄) = 0  and m (q)n1(s, r1) − c (q) < 0 for q ≥ q̄. Therefore, as a follow 

up to the first statement, π <  0 for q > q̄. So, q   ∈ [0, q̄]. 

From Weirstrauss’ theorem, an optimal solution exists since the objective function is 

continuous and the feasible region is closed and continuous. By Fermat’s theorem, the 

optimal solution can lie only on boundaries, non-differentiable points, or stationary points 

(obtained from the first order conditions). Boundaries p = 0  and p = m(q)n1(s, r1) can be 

ruled out since π ≤ 0 and we can argue along the lines of the previous paragraphs that those 

prices are infeasible as optimal solutions to our problem. Similarly, the profit generated 

by the stationary points are at least as much as when price is at the discontinuity point 
m(q) m(q)(m(q)n2(s, r2)). So, the optimal price must belong to the set p1 = , p2 = . At  
2W1 2W2 

m(q)σ m(q)p = p1, the resulting profit is π1 = −c(q); and at p = p2, the profit is π2 = −c(q).
4W1 4W2 

1 W −1 σ 1−σNow we compare π1 and π2. Suppose = σn1(s, r1) >t =1 σt 1 n1(s,r1) 
+ 

n2(s,r2) 

2 W −1 . Then, π1 > π2. In this case, p1 > m(q)n2(s, r2) is satisfied: t =1 σt 2 (−1
σ 1 − σ 

σn1(s, r1) > + 
n1(s, r1) n2(s, r2) 

1 1 − σ σ ⇔ < + 
σn1(s, r1) n2(s, r2) n1(s, r1) 

n1(s, r1)⇔ 1 < (1 − σ)σ + σ2 

n2(s, r2) 

⇔ (1 − σ2)n2(s, r2) < (1 − σ)σn1(s, r1) 

1 ⇔ 1 +  n2(s, r2) < n1(s, r1)
σ 

⇒ 2n2(s, r2) < n1(s, r1) (∵ σ <  1) 

m(q)n1(s, r1)⇔ m(q)n2(s, r2) < = p1
2 

−1 
= 
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Thus the stationary point p = p1 exists and it is the equilibrium price. 
1 W−1 2 W−1Similarly, when > , the stationary point p = p2 ist =1 σt 1 t =1 σt 2 

the equilibrium price. Finally, when W1 = W2, both p = p1 and p = p2 are valid as 

stationary points. 

Lastly, we show that the continuity of equilibrium outcome with respect to the param-

eters s, rt, and σ. It is clear that W is a continuous function of all the parameters. Thus, 

the equilibrium quality and profit (which are defined by continuous implicit function of W ) 

are also continuous in parameters. The same holds for the price except for the case where 

W1 = W2. 

F.4 Proof of Lemma 3.4.1 (on Page 85) 

Lemma 3.4.1 Wt ∈ W (s, r1, r2, σ) is non decreasing in rt and non increasing in σ. 

With respect to s, the function decreases when W (s, r1, r2, σ) = W1 but may increase 

or decrease when W (s, r1, r2, σ) = W2. 

Proof First we show the result regarding rt. Because W is continuous, it is sufficient that 

we show ∂W1 > 0 and ∂W2 > 0.
∂r ∂r 

∂W1 1 ∂n1(s, r1)
= − 

∂r1 σn1(s, r1)2 ∂r1 

∂W1 
= 0  

∂r2 

∂W2 σ ∂n1(s, r1)
= − 

∂r1 n1(s, r1)2 ∂r1 

∂W2 1− σ ∂n2(s, r2)
= − 

∂r2 σn2(s, r2) ∂r2 

From Lemma 3.3.2, ∂nt(s,rt) ≤ 0. Thus all the four equations are greater than zero.
∂rt 

Similarly, with respect to σ: 

∂W1 
= 0  

∂σ 
∂W2 1 1 

= − + . 
∂σ n2(s, r2) n1(s, r1) 
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The first equation is (weakly) less than zero. The second is less than zero because n2(s, r2) ≤ 

n1(s, r1) from Lemma 3.3.1. 

Lastly, we show the result with respect to s. If  W1 < W2, W = W1 and 

∂W1 1 ∂n1(s, r1)
= − ≤ 0 

∂s n1(s, r1)2 ∂s 

from Lemma 3.3.2. If W1 > W2, W = W2 and 

∂W2 1 − σ ∂n2(s, r2) σ ∂n1(s, r1)
= − − . 

∂s n2(s, r2)2 ∂s n1(s, r1)2 ∂s 

∂W2 1 ∂n2(s,r2) ∂W2 1 ∂n1(s,r1)From Lemma 3.3.2, limσ→0 ∂s = − 
n2(s,r2)2 ∂s ≥ 0 and limσ→1 ∂s = − 

∂s ≤ 
n1(s,r1)2 

0 

F.5 Proof of Theorem 3.4.1 (on Page 86) 

Theorem 3.4.1 When the parameters change, the following hold at the equilibrium. 

1. If rt increases (equivalently, decreases): the quality and the profit decrease (in-

crease); if the price is a singleton, it also decreases (increases). 

2. If σ increases (decreases): the quality and the profit increase (decrease); if the price 

is a singleton, it also increases (decrease). 

3. If s increases: the profit, quality, and price may decrease. 

Proof From Lemma 3.4.1, we know the sensitivity of Wt ∈ W (s, r1, r2, σ) with respect 

to the exogenous parameters. Hence, we only need to show the equilibrium changes with 

Wt ∈ W (s, r1, r2, σ). 

First, we show that q   is decreasing in Wt ∈ W (s, r1, r2, σ). Recall that the equilibrium 
m (q ∗) tquality satisfies − c (q  ) = 0  for Wt ∈ W (s, r1, r2, σ) and is unique. 
4Wt t =1 σt 

m (q ∗) tSo, ∗) = Wt for Wt ∈ W (s, r1, r2, σ). Since we assumed m(q) to be
4c (q t =1 σt 

concave and c(q) convex, m (q) is decreasing; but c (q) is always increasing in q. So, m
c (

( 
q
q 
∗
∗ 

)
) 

decreases as q   increases. It implies that if the right hand side increases, the equilibrium 
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quality decreases. When s and rt change, the treatment is straightforward because the right 

hand side directly changes with W . We then consider the case of σt next. 

Consider the case W2 ∈ W (s, r1, r2, σ). The right hand side can be substituted as 
2 = 1. Thus, q   increases when W2 decreases. If W1 = 1/ni(s, ri) ∈ W (s, r1, r2, σ),t=1 σt 

the right hand side is σW1. In this case, W (s, r1, r2, σ) is independent of σ, and q   increases 

when W (s, r1, r2, σ) decreases. 
  m(q ∗)Regarding the price, recall that the price is p = 

2W (s,r1,r2,σ) 
. Suppose Wt ∈ W (s, r1, r2, σ) 

increases. From the previous argument, we know that m(q  ) increases. So the numerator 

increases and denominator decreases. Thus p   decreases. 
m(q ∗) tThe profit can be written as − c(q  ) in any case. By applying 

4W (s,r1,r2,σ) t =1 σt 

the envelope theorem, the profit decreases if Wt ∈ W (s, r1, r2, σ) increases. 

F.6 Proof of Theorem 3.4.2 (on Page 90) 

Theorem 3.4.2 Social welfare can increase with the amount of bias. 

√ 
Proof Let the utility function be u(x; β, q) =  βqx − λx and the quality perception be 

q̃1 = q(s + 1). The first term is the benefit consumers obtain from the risky behavior, 

and the second term is the cost associated with the risky behavior. The benefit is assumed 

to be concave, and the cost is assumed to be linear. The consumers are assumed to be 

heterogeneous in the benefit but not in the cost. This specification satisfies the assumptions 

we made in the section 3.2. To show it also satisfies the separability assumption in 3.2.1, 

first the expected utility for the ill-informed consumers is 

EU1 = r1 βqx − λx + (1− r1) βq(1 + s)x − λx . 

2 
From the first order condition, x   

i = 
4 
βq
λ2 r1 + (1− r1) (1 + s) . The optimal 

expected utility is: 

2 
EU1 

  = β · q
r1 + (1− r1) (1 + s)

4λ 
≡ βm(q)n1(s, r1). 
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Similarly, the expected utility of well-informed consumers can be written as EU2 
  = βm(q)n2(s, r2)(2 

where n2(s, r2) =  √ r2 + (1  − r2) . 
(1+s) 

The social welfare expression is extensive, but ∂SW at s = 0  can be simplified as
∂s 

∂SW σ − r1σ − r2(1 − σ)
= ,

∂s s=0 1024kλ2 

which can be positive if r1 and r2 are sufficiently small. For example, the parameter we 

used for figure 3.2(b) (σ, r1, r2) = (.6, .2, .2) satisfies this condition. Therefore, when s is 

increased from zero, the social welfare may improve. It implies that the social welfare can 

increase with the amount of bias. 

F.7 Proof of Theorem 3.4.3 (on Page 92) 

Theorem 3.4.3 There exist scenarios where social and consumer welfare are higher with-

out security software in the market. 

Proof We use the same specification as mentioned in the proof of Theorem 3.4.2. The 

social welfare is zero if there is no market for the security software. Thus, we only have 

to show that there exists a set of parameters with which the social welfare is negative. For 

example, let (s, σ, r1, r2, k, λ) = (3, .5, .1, .1, 1, .05). The social welfare evaluated at this 

point is approximately −.203. Therefore, there exists a case where the social welfare is 

smaller with market than without market. 

https://s,�,r1,r2,k,�)=(3,.5,.1,.1,1,.05
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