3 research outputs found

    Discrete-time modified number- and time-limited vacation queues

    Get PDF
    A vast amount of literature has appeared on vacation queues. In the well-known number- and time-limited vacation policies, the server goes on vacation if the number of customers, respectively, work (time slots) served since the previous vacation reaches a specified value, or if the system becomes empty, whichever occurs first. However, in practice, the server does not always go on vacation when the system is empty if the number of customers/work to be served has not yet reached the specified amount. Therefore, we study modified number- and time-limited vacation policies, where we account for this feature. We complement our recent work on these vacation policies by considering a discrete time, instead of a continuous-time, setting. We therefore adopt a different analysis approach, which enables us to obtain similar as well as new results as compared to our previous work. The results in this paper are valid for a memoryless distribution, but also for distributions with finite support, and a mixture of geometric distributions

    Discrete-time modified number- and time-limited vacation queues

    No full text
    A vast amount of literature has appeared on vacation queues. In the well-known number- and time-limited vacation policies, the server goes on vacation if the number of customers, respectively, work (time slots) served since the previous vacation reaches a specified value, or if the system becomes empty, whichever occurs first. However, in practice, the server does not always go on vacation when the system is empty if the number of customers/work to be served has not yet reached the specified amount. Therefore, we study modified number- and time-limited vacation policies, where we account for this feature. We complement our recent work on these vacation policies by considering a discrete time, instead of a continuous-time, setting. We therefore adopt a different analysis approach, which enables us to obtain similar as well as new results as compared to our previous work. The results in this paper are valid for a memoryless distribution, but also for distributions with finite support, and a mixture of geometric distributions
    corecore