1,612,087 research outputs found
Hamiltonian mechanics on discrete manifolds
The mathematical/geometric structure of discrete models of systems, whether these models are obtained after discretization of a smooth system or as a direct result of modeling at the discrete level, have not been studied much. Mostly one is concerned regarding the nature of the solutions, but not much has been done regarding the structure of these discrete models. In this paper we provide a framework for the study of discrete models, speci?cally we present a Hamiltonian point of view. To this end we introduce the concept of a discrete calculus
Discrete structure of the brain rhythms
Neuronal activity in the brain generates synchronous oscillations of the
Local Field Potential (LFP). The traditional analyses of the LFPs are based on
decomposing the signal into simpler components, such as sinusoidal harmonics.
However, a common drawback of such methods is that the decomposition primitives
are usually presumed from the onset, which may bias our understanding of the
signal's structure. Here, we introduce an alternative approach that allows an
impartial, high resolution, hands-off decomposition of the brain waves into a
small number of discrete, frequency-modulated oscillatory processes, which we
call oscillons. In particular, we demonstrate that mouse hippocampal LFP
contain a single oscillon that occupies the -frequency band and a
couple of -oscillons that correspond, respectively, to slow and fast
-waves. Since the oscillons were identified empirically, they may
represent the actual, physical structure of synchronous oscillations in
neuronal ensembles, whereas Fourier-defined "brain waves" are nothing but
poorly resolved oscillons.Comment: 17 pages, 9 figure
Discrete-time port-Hamiltonian systems: A definition based on symplectic integration
We introduce a new definition of discrete-time port-Hamiltonian systems
(PHS), which results from structure-preserving discretization of explicit PHS
in time. We discretize the underlying continuous-time Dirac structure with the
collocation method and add discrete-time dynamics by the use of symplectic
numerical integration schemes. The conservation of a discrete-time energy
balance - expressed in terms of the discrete-time Dirac structure - extends the
notion of symplecticity of geometric integration schemes to open systems. We
discuss the energy approximation errors in the context of the presented
definition and show that their order is consistent with the order of the
numerical integration scheme. Implicit Gauss-Legendre methods and Lobatto
IIIA/IIIB pairs for partitioned systems are examples for integration schemes
that are covered by our definition. The statements on the numerical energy
errors are illustrated by elementary numerical experiments.Comment: 12 pages. Preprint submitted to Systems & Control Letter
- …
