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Discrete structure of the Brain 
Rhythms
L. perotti1, J. DeVito2, D. Bessis1 & Y. Dabaghian2

Neuronal activity in the brain generates synchronous oscillations of the Local Field potential (LFp). the 
traditional analyses of the LFps are based on decomposing the signal into simpler components, such 
as sinusoidal harmonics. However, a common drawback of such methods is that the decomposition 
primitives are usually presumed from the onset, which may bias our understanding of the signal’s 
structure. Here, we introduce an alternative approach that allows an impartial, high resolution, hands-
off decomposition of the brain waves into a small number of discrete, frequency-modulated oscillatory 
processes, which we call oscillons. In particular, we demonstrate that mouse hippocampal LFp contain 
a single oscillon that occupies the θ-frequency band and a couple of γ-oscillons that correspond, 
respectively, to slow and fast γ-waves. Since the oscillons were identified empirically, they may 
represent the actual, physical structure of synchronous oscillations in neuronal ensembles, whereas 
Fourier-defined “brain waves” are nothing but poorly resolved oscillons.

Neurons in the brain are submerged into a rhythmically oscillating electrical field, created by synchronized syn-
aptic currents1. The corresponding potential, known as local field potential (LFP) is one of the principal deter-
minants of neural activity at all levels, from the synchronized spiking of the individual neurons to high-level 
cognitive processes2. Attempts to understand the structure and function of LFP oscillations, and of their spatio-
temporally smoothed counterparts—the electroencephalograms (EEG), continues almost a century and a system-
atic understanding of their roles begins to take shape.

The possibility to identify true physiological functions of the LFP depends fundamentally on the mathemat-
ical and computational tools used for its analysis. The majority of the currently existing methods are based on 
breaking the signal into a combination of simpler components, such as sinusoidal harmonics or wavelets3,4, and 
then correlating them with physiological, behavioral and cognitive phenomena5,6. For example, wavelet analysis 
is most appropriate for studying time-localized events, such as ripples or spindles7,8, whereas for the general anal-
yses, the oscillatory nature of LFPs suggests using discrete Fourier decomposition into a set of plane waves with a 
fixed set of frequencies ω, 2ω, 3ω, …. The latter approach has dominated the field for the last several decades and 
now constitutes, in effect, the only systematic framework for our understanding of the structure and the physi-
ological functions of the brain rhythms6. However, a common flaw of these methods is that the decomposition 
primitives are presumed from the onset, and the goal of subsequent analyses reduces merely to identifying the 
combination that best reproduces the original signal. Since no method can guarantee a universally good rep-
resentation of the signals’ features and since the physiological structure of the LFPs remains unknown, obtaining 
a physically adequate description of the brain rhythms is a matter of fundamental importance.

Below we propose a novel approach of LFP analysis based on a recent series of publications9–11, in which 
an optimal set of frequencies ω1,ω2, …, is estimated, at every moment of time t, using the Padé Approximation 
Theory12. In contrast with the Fourier method, these adaptively optimized values can freely change within the 
sampling frequency domain, guided only by the signal’s structure. The resulting harmonics are highly respon-
sive to the signals’ dynamics and capture subtle details of the signal’s spectrum very effectively, as one would 
expect from a Padé Approximation based technique. We call the new method Discrete Padé Transform (DPT), to 
emphasize certain key correspondences with the traditional Discrete Fourier Transform (DFT).

Applying DPT analyses to LFP rhythms recorded in mouse hippocampi reveals a new level in their struc-
ture–a small number of frequency-modulated oscillatory processes, which we call oscillons. Importantly, oscil-
lons are observed in the physiologically important theta (θ)13–15 and gamma (γ)16,17 frequency domains, but are 
much sharper defined. For example, in the Fourier approach, the θ-rhythm is loosely defined as a combination 
of the plane waves with frequencies between 4 and 12 Hz13–15. In contrast, our method suggests that there exists 
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a single frequency-modulated wave—the θ-oscillon—that occupies the entire θ frequency band and constitutes 
the θ-rhythm. Similarly, we observe oscillons in the low and high γ-frequency domains. The superposition of the 
oscillons reproduces the original LFP signal with high accuracy, which implies that these waves provide a remark-
ably sparse representation of the LFP oscillations. Since oscillons emerged as a result of empirical analyses, we 
hypothesize that they represent the actual, physical structure of synchronized neuronal oscillations, which were 
previously approximately described as the Fourier-defined “brain waves.”

Results
the oscillons. We implemented a “Short Time Padé Transform” (STPT), in which a short segment of the time 
series (that fits into a window of a width TW) is analyzed at a time. This allows us to follow the signal’s spectral 
composition on moment-to-moment basis and to illustrate its spectral dynamics using Padé spectrograms (the 
analogues of to the standard Fourier spectrograms18,19).

Applying these analyses to the hippocampal LFPs recorded in awake rodents during habituation stage20, we 
observed that there exist two types of time-modulated frequencies (Fig. 1). First, there is a set of frequencies that 
change across time in a regular manner, leaving distinct, continuous traces—the spectral waves. As shown on 
Fig. 1A, the most robust, continuous spectral waves with high amplitudes (typically three or four of them) are 
confined to the low frequency domain and roughly correspond to the traditional θ- and γ-waves13,16. The higher 
frequency (over 100 Hz) spectral waves are scarce and short, representing time-localized oscillatory phenom-
ena that correspond, in the standard Fourier approach, to fast γ events21, sharp wave ripples (SWRs)22 or spin-
dles23. Second, there exists a large set of “irregular” frequencies that assume sporadic values from one moment 
to another, without producing contiguous patterns and that correspond to instantaneous waves with very low 
amplitudes.

From the mathematical perspective, the existence of these two types of instantaneous frequencies can be 
explained based on several subtle theorems of Complex Analysis, which point out that the “irregular” harmonics 
represent the signal’s noise component, whereas the “regular,” stable harmonics define its oscillatory part (see24–27 
and the Mathematical Supplement). Thus, in addition to revealing subtle dynamics the frequency spectrum, the 
DPT method allows a context-free, impartial identification of noise, which makes it particularly important for 
the biological applications28,29.

Figure 1. Padé spectrograms of the hippocampal LFP signal. (A) Discrete Padé Spectrogram (DPS) produced 
for the LFP signal recorded in the CA1 region of the rodent hippocampus at the sampling rate 10 kHz. At 
each moment of time, the vertical cross section of the spectrogram gives the instantaneous set of the regular 
frequencies. At consecutive moments of time, these frequencies produce distinct, contiguous traces, which can 
be regarded as timelines of discrete oscillatory processes—the spectral waves with varying frequencies ωq(t), 
amplitudes Aq(t) (shown by the color of dots) and phases ψq(t) (not shown). Note that the higher frequency 
spectral waves tend to have lower amplitudes. Highest amplitudes appear in the θ-region, i.e. in the frequency 
range between 4 and 12 Hz. The spectral waves above 100 Hz tend to be scarce and discontinuous, representing 
time-localized splashes of LFP. The width of the time window is TW = 0.08 sec (800 data points). The pie 
diagrams in the box show that stable harmonics constitute only 5% of their total number, but carry over 99% 
of the signal’s power. (B) The LFP signal reconstructed from the regular poles (red trace) closely matches the 
original signal (black trace) over its entire length, which demonstrates that the oscillon decomposition (2) 
provides an accurate representation of the signal. The difference between the original and the reconstructed 
signal is due to the removed noise component—the discarded “irregular” harmonics (the magenta “grass” along 
the x-axis). Although their number is large (about 90–99% of the total number of frequencies), their combined 
contribution is small—only about 10−3–10−4% of the signals power.
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As it turns out, the unstable, or “noisy,” frequencies typically constitute over 95% of the total number of har-
monics (Fig. 1A). However, the superposition of the harmonics that correspond to the remaining, stable frequen-
cies captures the shape of the signal remarkably well (Fig. 1B). In other words, although only a small portion of 
frequencies are regular, they contribute over 99% of the signal’s amplitude: typically, the original LFP signal differs 
from the superposition of the stable harmonics by less than 1%. If the contribution of the “irregular” harmonics 
(i.e., the noise component ξ(t)) is included, the difference is less than 10−4–10−6 of the signal’s amplitude.

These results suggest that the familiar Fourier decomposition of the LFP signals into a superposition of plane 
waves with constant frequencies,

= Σ ω
=r t a e( ) , (1)p

N
p

i t
1

p

should be replaced by a combination of a few phase-modulated waves embedded into a weak noise background 
ξ(t),

ξ= Σ +φ
=s t A e t( ) ( ), (2)q

M
q

i t
1

( )q

which we call oscillons. We emphasize that the number M N  of the oscillons in the decomposition (2), their 
amplitudes Aq, their phases φq and the time-dependent frequencies ωq(t) = ∂tφq(t) (i.e., the spectral waves shown 
on Fig. 1A) are reconstructed on moment-by-moment basis from the local segments of the LFP signal in a 
hands-off manner: we do not presume a priori how many frequencies will be qualified as “stable,” when these 
stable frequencies will appear or disappear, or how their values will evolve in time, or what the corresponding 
amplitudes will be. Thus, the structure of the decomposition (2) is obtained empirically, which suggests that the 
oscillons may reflect the actual, physical structure of the LFP rhythms.

the spectral waves. We studied the structure the two lowest spectral waves using high temporal resolution 
spectrograms (Fig. 2A). Notice that these spectral waves have a clear oscillatory structure,

ω ω ω ϕ ω ϕ= + Ω + + Ω + + … =t t t q( ) sin( ) sin( ) , 1, 2, (3)q q q q q q q q,0 ,1 ,1 ,1 ,2 ,2 ,2

characterized by a mean frequency ωq,0, as well as by the amplitudes, ωq,i, the frequencies, Ωθ,i, and the phases, ϕθ,i, 
of the modulating harmonics. The lowest wave has the mean frequency of about 8 Hz and lies in the domain 
2 ≤ ω/2π ≤ 17 Hz, which corresponds to the θ-frequency range13. The second wave has the mean frequency of 

Figure 2. Spectral waves. (A) A detailed representation of the lower portion the spectrogram recomputed for 
TW = 0.08 sec (80 data points) exhibits clear oscillatory patterns. (B) The shape of the two lowest frequency 
spectral waves is stable with respect to the variation of time window size, TW. The strikes of different color 
in the top left corner represent the widths of the four TW-values used in DPT analysis. The corresponding 
reconstructed frequencies are shown by the dots of the same color. Although the frequencies obtained 
for different TWs do not match each other exactly, they outline approximately the same shape, which, we 
hypothesize, reflects the physical pattern of synchronized neuronal activity that produced the analyzed LFP 
signal. (C) Pie diagrams illustrate the numbers of data points N = 80, N = 160, N = 240, N = 320 and the mean 
numbers of the regular and the irregular (noisy) harmonics in each case.
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about 35 Hz and lies in the low-γ domain 25 ≤ ω/2π ≤ 45 Hz16. Importantly, the spectral waves are well separated 
from one another: the difference between their mean frequencies is larger than their amplitudes, which allows 
indexing them using the standard brain wave notations, as ωθ(t) and ωγ t( )

l
 respectively, e.g.,

ω ω ω ϕ ω ϕ= + Ω + + Ω + + …θ θ θ θ θ θ θ θt t t( ) sin( ) sin( ) , (4),0 ,1 ,1 ,1 ,2 ,2 ,2

for the θ spectral wave an

ω ω ω ϕ ω ϕ= + Ω + + Ω + + …γ γ γ γ γ γ γ γt t t( ) sin( ) sin( ) (5),0 ,1 ,1 ,1 ,2 ,2 ,2l l l l l l l l

for the low-γ spectral wave, etc.
We verified that these structures are stable with respect to the variations of the STPT parameters, e.g., to 

changing the sliding window size, TW. The size of the sliding window, and hence the number of points N that 
fall within this window can be changed by over 400%, without affecting the overall shape of the spectral waves 
(Fig. 2B). The smallest window size (a few milliseconds) is restricted by the requirement that the number of data 
points captured within TW should be bigger than the physical number of the spectral waves. On the other hand, 
the maximal value of TW is limited by the temporal resolution of STPT: if the size of the window becomes com-
parable to the characteristic period of a physical spectral wave, then the reconstructed wave looses its undulating 
shape and may instead produce a set of sidebands surrounding the mean frequency3. This effect limits the magni-
tude of the TW to abut 50 milliseconds—for larger values of TW, the undulating structure begins to straighten out, 
as shown on Fig. 1A for TW = 80 msec.

In contrast with this behavior, the values of the irregular frequencies are highly sensitive to the sliding window 
size and other DPT parameters, as one would expect from a noise-representing component. The correspond-
ing “noisy” harmonics can therefore be easily detected and removed using simple numerical procedures (see 
Mathematical Supplement). Moreover, we verified that the structure of the Padé Spectrogram, i.e., the parameters 
the oscillons remain stable even if the amount of numerically injected noise exceeds the signal’s natural noise level 
by an order of magnitude (about 10−4 of the signal’s mean amplitude), which indicates that the oscillatory part of 
the signal is robustly identified.

Parameters of the low frequency oscillons. To obtain a more stable description of the underlying pat-
terns, we interpolated the spectral waves over the uniformly spaced time points (Fig. 3A) and then studied the 
resulting “smoothened” spectral waves using the standard DFT tools. In particular, we found that, for studied LFP 
signals, the mean frequency of the θ-oscillon is about ωθ,0/2π = 7.5 ± 0.5 Hz and the mean frequency of the low 

Figure 3. Parameters of the spectral waves. (A) The red curve shows the smoothened θ spectral wave, obtained 
by interpolating the “raw” trace of the reconstructed frequencies shown on Fig. 2A over the uniformly spaced 
time points. (B) The power spectra produced by the Discrete Padé decomposition (DPT, red) and the standard 
Discrete Fourier decomposition (DFT, black) exhibit characteristic peaks around the mean frequency of the θ-
oscillon, ωθ,0/2π ≈ 7.5 Hz. The height of the peaks defines the amplitudes, respectively, of the θ-oscillon in the 
DPT approach and of the θ-rhythm in DFT. A smaller peak at about 34 Hz corresponds to the mean frequency 
of the low γ oscillon, ω π ≈γ /2 34

l,0
. The θ and the low γ frequency domains, marked by blue arrows, are defined 

by the amplitudes of the corresponding spectral waves. (C) The smoothened waves are used to compute the 
DFT transform and to extract the modulating frequencies Ωθ,1 ≈ 4.3 Hz, Ωθ,2 ≈ 7.3 Hz, Ωθ,3 ≈ 11 Hz, …, of the 
decomposition (4–5). The error margin in most estimates is ±0.5 Hz. Notice that there exist several approximate 
resonant relationships, e.g., Ωθ,4 ≈ 3Ωθ,1, Ωθ,5 ≈ 2Ωθ,2 and Ωθ,7 ≈ Ωθ,3, which suggest that the spectral θ-wave 
contains higher harmonics of a smaller set of prime frequencies.
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γ-oscillon is ω π = ±γ /2 34 2
l,0

 Hz, which correspond to the traditional (Fourier defined) average frequencies of 
the θ and the low γ rhythms.

The amplitudes of the θ and the low γ spectral waves—7.0 ± 1.5 Hz and 10.1 ± 1.7 Hz respectively—define the 
frequency domains (spectral widths) of the θ and the low γ rhythms (Fig. 3B). The amplitudes of the correspond-
ing oscillons constitute approximately Aθ/A ≈ 62% and ≈γA A/ 17%

l
 of the net signals’ amplitude A, i.e., the θ 

and the low γ oscillons carry about 80% of the signals’ magnitude.
The oscillatory parts of the spectral waves are also characterized by a stable set of frequencies and amplitudes: 

for the first two modulating harmonics we found ωθ,1/2π ≈ 4.3 Hz, ωθ,2/2π ≈ 3.2 Hz for the θ spectral wave (4) and 
ω π ≈ .γ /2 6 1

l,1
 Hz, ω π ≈ .γ /2 4 3

l,2
 Hz for the γ spectral wave (5). The corresponding modulating frequencies for the 

θ-oscillon are Ωθ,1 = 4.3 ± 0.45 Hz, Ωθ,2 = 7.3 ± 0.48 Hz, …, (Fig. 3C). The lowest modulating frequencies for the 
γ-oscillon are slightly higher: Ω = . ± .γ 5 3 0 41,1l

 Hz, Ω = . ± .γ 8 3 0 51,2l
 Hz, …. In general, the modulating fre-

quencies tend to increase with the mean frequency.
Importantly, the reconstructed frequencies sometimes exhibit approximate resonance relationships (Fig. 3C), 

implying that some of the higher order frequencies may be overtones of a smaller set of prime frequencies that 
define the dynamics of neuronal synchronization30–32.

Discussion
The Fourier and the Padé decompositions agree in simple cases, e.g., both spectrograms resolve the individual 
piano notes in a 10 sec excerpt from one of Claude Debussy’s Preludes (Fig. 4).

However, in more complex cases the DTP approach produces a more accurate description of the signal’s 
structure. For example, the Padé decomposition was previously used to detect faint gravitational waves in reso-
nant interferometers, which were completely missed by the Fourier analyses33. In the case of the LFP signals, this 
method identifies a small number of structurally stable, frequency-modulated oscillons which may reflect the 
physical synchronization patterns in the hippocampal network.

Why these structures were not previously observed via Fourier method? The reason lies in the insufficient 
resolution of the latter, which is due to the well-known inherent conflict between the frequency and the tempo-
ral resolutions in Fourier Analysis34. Indeed, in order to observe changes in the signal’ spectrum, the size of the 
sliding time window, TW, should be smaller than the characteristic timescale of frequency’s change, TW < ΔT. On 
the other hand, reducing TW implies lowering the number of data points in the sliding window, which results in 
an equal reduction of the number of the discrete harmonics, in both the DFT and the DPT approaches. However, 
since in DFT method these harmonics are restricted to a rigid, uniformly distributed set of values (SFig. 1), a 
decrease in the number of data points necessarily results in an increase of the interval between neighboring dis-
crete frequencies, i.e., in an unavoidable reduction of frequency resolution. In contrast, the DPT harmonics can 
move freely in the available frequency domain, responding to the spectral structure of the signal and providing 
a high resolution of the signals’ spectrum11. In other words, an increase in temporal resolution in DPT does not 
necessarily compromise the frequency resolution and vice versa, which allows describing the signal dynamics 
much more capably.

In the specific case illustrated on Fig. 2, the characteristic amplitudes of the spectral waves is about 15–25 Hz. 
Producing such frequency resolution in DFT at the sampling rate S = 10 kHz would require some N = 300–500 
constant frequency harmonics, i.e., N = 300–500 data points, which can be collected over TW = 30–50 msec time 
window. However, the characteristic period of the spectral waves is about 60 msec, which implies that for such 

Figure 4. Correspondence between the Discrete Fourier (left) and Padé (right) spectral decompositions. (A) 
Fourier spectrogram of a 10 second long excerpt from C. Debussy’s Preludes, Book 1: No. 8. La fille aux cheveux 
de lin, in which the individual notes are clearly audible. The high amplitude streaks (colorbar on the right) 
correspond to the notes (D#5, B4, G4, F4, G4, B4, D5, B4, G4, F4, G4, B4, G4, F4, G4, F4, …). (B) The Discrete 
Padé spectrogram of the same signal. The frequencies produced by large amplitude poles (see colorbar on the 
right) match the frequencies of their Fourier counterparts shown on the left. The frequencies produced the 
Froissart doubles form a very low amplitude background “dust,” shown in gray. Our main hypothesis is that 
the oscillons detected in the LFP signals by the DPT method may be viewed as “notes” within the neuronal 
oscillations.

https://doi.org/10.1038/s41598-018-37196-0


www.nature.com/scientificreports/

6Scientific RepoRts |          (2019) 9:1105  | https://doi.org/10.1038/s41598-018-37196-0

TWs, the DFT will not be able to resolve the frequency wave dynamics and will replace it by an average frequency 
with some sidebands (see Mathematical Supplement). In contrast, a DPT that uses as few as 80 data points in a 
TW = 8 msec wide time window, reliably capturing the shape of the spectral wave, which then remains overall 
unchanged as TW increases fourfold.

Another key property of the DPT method is the intrinsic marker of noise, which is particularly important 
in biological applications28,29. In general, the task of distinguishing “genuine noise” from a “regular, but highly 
complex” signal poses not only a computational, but also a profound conceptual challenge35,36. In contrast with 
the standard ad hoc approaches, the DPT method allows a context-free, impartial identification of the noise com-
ponent, as the part of the signal represented by the irregular harmonics.

The new structure also dovetails with the theoretical views on the origins of the LFP oscillations as on a result 
of synchronization of the neuronal spiking activity in both the excitatory and inhibitory networks30–32. Broadly 
speaking, it is believed that the LFP rhythms are due to a coupling between the electromagnetic fields produced 
by local neuronal groups1. If the coupling between these groups is sufficiently high, then the individual fields 
oscillating with amplitudes ap and phases xp synchronize, yielding a nonzero mean field Σ = φa e Aep p

ix ip  that is 
macroscopically observed as LFP30–32. In particular, the celebrated Kuramoto Model30 describes the synchroniza-
tion between oscillators via a system of equations

ω∂ = + Σ −x K x xsin( ), (6)t q q p q p,0

according to which the oscillators transit to a synchronized state, as the coupling strength K increases. Eq. (6) 
directly points out that the synchronized frequency, ω(t) = ∂tφ, should have the form (3). However, this form of 
expansion has not been previously extracted from the experimental data, which may be due to the fact that the 
Fourier method does not resolve the spectral structure in sufficient detail (SFig. 2). In contrast, the description 
of the LFP oscillations produced by the DPT method may provide such resolution and help to link the empirical 
data to theoretical models of neuronal synchronization.
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