15,239 research outputs found

    A design tool for globally developable discrete architectural surfaces using Ricci flow

    Get PDF
    This paper presents an approach for the design of discrete architectural surfaces that are globally developable; that is, having zero Gaussian curvature at every interior node. This kind of architectural surface is particularly suitable for fast fabrication at a low cost, since their curved geometry can be developed into a plane. This highly non-linear design problem is broken down into two sub-problems: (1) find the member lengths of a triangular mesh that lead to zero Gaussian curvature, by employing the discrete surface Ricci flow developed in the field of discrete differential geometry; (2) realize the final geometry by solving an optimization problem, subject to the constraints on member lengths as well as the given boundary. It is demonstrated by the numerical examples that both of these two sub-problems can be solved with small computational costs and sufficient accuracy. In addition, the Ricci flow algorithm has an attractive feature-the final design is conformal to the initial one. Conformality could result in higher structural performance, because the shape of each panel is kept as close as possible to its initial design, suppressing possible distortion of the panels. This paper further presents an improved circle packing scheme implemented in the discrete surface Ricci flow to achieve better conformality, while keeping its simplicity in algorithm implementation as in the existing Thurston's scheme

    The Simplicial Ricci Tensor

    Full text link
    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The 3-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The 4-dimensional Ric is the Einstein tensor for such spacetimes. More recently the Ric was used by Hamilton to define a non-linear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher-dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area -- an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimension.Comment: 19 pages, 2 figure

    Combinatorial Calabi flows on surfaces

    Full text link
    For triangulated surfaces, we introduce the combinatorial Calabi flow which is an analogue of smooth Calabi flow. We prove that the solution of combinatorial Calabi flow exists for all time. Moreover, the solution converges if and only if Thurston's circle packing exists. As a consequence, combinatorial Calabi flow provides a new algorithm to find circle packings with prescribed curvatures. The proofs rely on careful analysis of combinatorial Calabi energy, combinatorial Ricci potential and discrete dual-Laplacians.Comment: 17 pages, 5 figure
    corecore