3,865 research outputs found

    A Control-Oriented Notion of Finite State Approximation

    Full text link
    We consider the problem of approximating discrete-time plants with finite-valued sensors and actu- ators by deterministic finite memory systems for the purpose of certified-by-design controller synthesis. Building on ideas from robust control, we propose a control-oriented notion of finite state approximation for these systems, demonstrate its relevance to the control synthesis problem, and discuss its key features.Comment: IEEE Transactions on Automatic Control, to appea

    Constructing (Bi)Similar Finite State Abstractions using Asynchronous ll-Complete Approximations

    Full text link
    This paper constructs a finite state abstraction of a possibly continuous-time and infinite state model in two steps. First, a finite external signal space is added, generating a so called Φ\Phi-dynamical system. Secondly, the strongest asynchronous ll-complete approximation of the external dynamics is constructed. As our main results, we show that (i) the abstraction simulates the original system, and (ii) bisimilarity between the original system and its abstraction holds, if and only if the original system is ll-complete and its state space satisfies an additional property

    Symbolic models for nonlinear control systems without stability assumptions

    Full text link
    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive classes of systems, or they require the exact computation of reachable sets. In this paper, we propose a new abstraction technique that is applicable to any smooth control system as long as we are only interested in its behavior in a compact set. Moreover, the exact computation of reachable sets is not required. The effectiveness of the proposed results is illustrated by synthesizing a controller to steer a vehicle.Comment: 11 pages, 2 figures, journa

    Consistent approximations of the zeno behaviour in affine-type switched dynamic systems

    Get PDF
    This paper proposes a new theoretic approach to a specific interaction of continuous and discrete dynamics in switched control systems known as a Zeno behaviour. We study executions of switched control systems with affine structure that admit infinitely many discrete transitions on a finite time interval. Although the real world processes do not present the corresponding behaviour, mathematical models of many engineering systems may be Zeno due to the used formal abstraction. We propose two useful approximative approaches to the Zeno dynamics, namely, an analytic technique and a variational description of this phenomenon. A generic trajectory associated with the Zeno dynamics can finally be characterized as a result of a specific projection or/and an optimization procedure applied to the original dynamic model. The obtained analytic and variational techniques provide an effective methodology for constructive approximations of the general Zeno-type behaviour. We also discuss shortly some possible applications of the proposed approximation schemes
    corecore