11 research outputs found

    Discrete embedding for latent networks

    Full text link
    Discrete network embedding emerged recently as a new direction of network representation learning. Compared with traditional network embedding models, discrete network embedding aims to compress model size and accelerate model inference by learning a set of short binary codes for network vertices. However, existing discrete network embedding methods usually assume that the network structures (e.g., edge weights) are readily available. In real-world scenarios such as social networks, sometimes it is impossible to collect explicit network structure information and it usually needs to be inferred from implicit data such as information cascades in the networks. To address this issue, we present an end-to-end discrete network embedding model for latent networks (DELN) that can learn binary representations from underlying information cascades. The essential idea is to infer a latent Weisfeiler-Lehman proximity matrix that captures node dependence based on information cascades and then to factorize the latent Weisfiler-Lehman matrix under the binary node representation constraint. Since the learning problem is a mixed integer optimization problem, an efficient maximal likelihood estimation based cyclic coordinate descent (MLE-CCD) algorithm is used as the solution. Experiments on real-world datasets show that the proposed model outperforms the state-of-the-art network embedding methods

    Search Efficient Binary Network Embedding

    Full text link
    Traditional network embedding primarily focuses on learning a dense vector representation for each node, which encodes network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned dense vector representations are inefficient for large-scale similarity search, which requires to find the nearest neighbor measured by Euclidean distance in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a sparse binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations efficiently through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support much quicker network node search compared to Euclidean distance or other distance measures. Our experiments and comparisons show that BinaryNE not only delivers more than 23 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods

    Binarized attributed network embedding

    Full text link
    © 2018 IEEE. Attributed network embedding enables joint representation learning of node links and attributes. Existing attributed network embedding models are designed in continuous Euclidean spaces which often introduce data redundancy and impose challenges to storage and computation costs. To this end, we present a Binarized Attributed Network Embedding model (BANE for short) to learn binary node representation. Specifically, we define a new Weisfeiler-Lehman proximity matrix to capture data dependence between node links and attributes by aggregating the information of node attributes and links from neighboring nodes to a given target node in a layer-wise manner. Based on the Weisfeiler-Lehman proximity matrix, we formulate a new Weisfiler-Lehman matrix factorization learning function under the binary node representation constraint. The learning problem is a mixed integer optimization and an efficient cyclic coordinate descent (CCD) algorithm is used as the solution. Node classification and link prediction experiments on real-world datasets show that the proposed BANE model outperforms the state-of-the-art network embedding methods

    Graph Neural Networks and its applications

    Get PDF
    This project will explore some of the most prominent Graph Neural Network variants and apply them to two tasks: approximation of the community detection Girvan-Newman algorithm and compiled code snippet classification

    A Survey on Graph Representation Learning Methods

    Full text link
    Graphs representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of large graphs accurately. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification, link prediction and anomaly detection. Many techniques are proposed for generating effective graph representation vectors. Two of the most prevalent categories of graph representation learning are graph embedding methods without using graph neural nets (GNN), which we denote as non-GNN based graph embedding methods, and graph neural nets (GNN) based methods. Non-GNN graph embedding methods are based on techniques such as random walks, temporal point processes and neural network learning methods. GNN-based methods, on the other hand, are the application of deep learning on graph data. In this survey, we provide an overview of these two categories and cover the current state-of-the-art methods for both static and dynamic graphs. Finally, we explore some open and ongoing research directions for future work
    corecore