75,468 research outputs found

    Apollonian circle packings: Dynamics and Number theory

    Full text link
    We give an overview of various counting problems for Apollonian circle packings, which turn out to be related to problems in dynamics and number theory for thin groups. This survey article is an expanded version of my lecture notes prepared for the 13th Takagi lectures given at RIMS, Kyoto in the fall of 2013.Comment: To appear in Japanese Journal of Mat

    Dynamics on geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond

    Full text link
    We present recent results on counting and distribution of circles in a given circle packing invariant under a geometrically finite Kleinian group and discuss how the dynamics of flows on geometrically finite hyperbolic 33 manifolds are related. Our results apply to Apollonian circle packings, Sierpinski curves, Schottky dances, etc.Comment: To appear in the Proceedings of ICM, 201

    McShane-type Identities for Affine Deformations

    Get PDF
    We derive an identity for Margulis invariants of affine deformations of a complete orientable one-ended hyperbolic sur- face following the identities of McShane, Mirzakhani and Tan- Wong-Zhang. As a corollary, a deformation of the surface which infinitesimally lengthens all interior simple closed curves must in- finitesimally lengthen the boundary.Comment: resubmitted after error revising another submissio

    The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications

    Get PDF
    The principle goal of computational mechanics is to define pattern and structure so that the organization of complex systems can be detected and quantified. Computational mechanics developed from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving weak fluid turbulence via the method of reconstructing attractor geometry from measurement time series and in the mid-1980s to estimate equations of motion directly from complex time series. In providing a mathematical and operational definition of structure it addressed weaknesses of these early approaches to discovering patterns in natural systems. Since then, computational mechanics has led to a range of results from theoretical physics and nonlinear mathematics to diverse applications---from closed-form analysis of Markov and non-Markov stochastic processes that are ergodic or nonergodic and their measures of information and intrinsic computation to complex materials and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical processes and the evolution of computation and language. This brief review clarifies several misunderstandings and addresses concerns recently raised regarding early works in the field (1980s). We show that misguided evaluations of the contributions of computational mechanics are groundless and stem from a lack of familiarity with its basic goals and from a failure to consider its historical context. For all practical purposes, its modern methods and results largely supersede the early works. This not only renders recent criticism moot and shows the solid ground on which computational mechanics stands but, most importantly, shows the significant progress achieved over three decades and points to the many intriguing and outstanding challenges in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht

    Small examples of non-constructible simplicial balls and spheres

    Full text link
    We construct non-constructible simplicial dd-spheres with d+10d+10 vertices and non-constructible, non-realizable simplicial dd-balls with d+9d+9 vertices for d≥3d\geq 3.Comment: 9 pages, 3 figure
    • …
    corecore