111,538 research outputs found

    An explicit universal cycle for the (n-1)-permutations of an n-set

    Full text link
    We show how to construct an explicit Hamilton cycle in the directed Cayley graph Cay({\sigma_n, sigma_{n-1}} : \mathbb{S}_n), where \sigma_k = (1 2 >... k). The existence of such cycles was shown by Jackson (Discrete Mathematics, 149 (1996) 123-129) but the proof only shows that a certain directed graph is Eulerian, and Knuth (Volume 4 Fascicle 2, Generating All Tuples and Permutations (2005)) asks for an explicit construction. We show that a simple recursion describes our Hamilton cycle and that the cycle can be generated by an iterative algorithm that uses O(n) space. Moreover, the algorithm produces each successive edge of the cycle in constant time; such algorithms are said to be loopless

    Numerical Computation of Exponential Functions of Nabla Fractional Calculus

    Full text link
    In this article, we illustrate the asymptotic behaviour of exponential functions of nabla fractional calculus. For this purpose, we propose a novel matrix technique to compute these functions numerically

    A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods

    Full text link
    We introduce a polynomial spectral calculus that follows from the summation by parts property of the Legendre-Gauss-Lobatto quadrature. We use the calculus to simplify the analysis of two multidimensional discontinuous Galerkin spectral element approximations

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    The design of conservative finite element discretisations for the vectorial modified KdV equation

    Full text link
    We design a consistent Galerkin scheme for the approximation of the vectorial modified Korteweg-de Vries equation. We demonstrate that the scheme conserves energy up to machine precision. In this sense the method is consistent with the energy balance of the continuous system. This energy balance ensures there is no numerical dissipation allowing for extremely accurate long time simulations free from numerical artifacts. Various numerical experiments are shown demonstrating the asymptotic convergence of the method with respect to the discretisation parameters. Some simulations are also presented that correctly capture the unusual interactions between solitons in the vectorial setting
    • …
    corecore