102 research outputs found

    Geometric Finite Element Discretization of Maxwell Equations in Primal and Dual Spaces

    Full text link
    Based on a geometric discretization scheme for Maxwell equations, we unveil a mathematical\textit{\}transformation between the electric field intensity EE and the magnetic field intensity HH, denoted as Galerkin duality. Using Galerkin duality and discrete Hodge operators, we construct two system matrices, [XE][ X_{E}] (primal formulation) and [XH[ X_{H} % ] (dual formulation) respectively, that discretize the second-order vector wave equations. We show that the primal formulation recovers the conventional (edge-element) finite element method (FEM) and suggests a geometric foundation for it. On the other hand, the dual formulation suggests a new (dual) type of FEM. Although both formulations give identical dynamical physical solutions, the dimensions of the null spaces are different.Comment: 22 pages and 4 figure

    Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes

    Get PDF
    Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincar\'e inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes

    Mimetic discretizations of the incompressible Navier–Stokes equations for polyhedral meshes

    Get PDF

    Mimetic discretizations of the incompressible Navier–Stokes equations for polyhedral meshes

    Get PDF
    • …
    corecore