218,950 research outputs found
On Continuous-Time Gaussian Channels
A continuous-time white Gaussian channel can be formulated using a white
Gaussian noise, and a conventional way for examining such a channel is the
sampling approach based on the Shannon-Nyquist sampling theorem, where the
original continuous-time channel is converted to an equivalent discrete-time
channel, to which a great variety of established tools and methodology can be
applied. However, one of the key issues of this scheme is that continuous-time
feedback and memory cannot be incorporated into the channel model. It turns out
that this issue can be circumvented by considering the Brownian motion
formulation of a continuous-time white Gaussian channel. Nevertheless, as
opposed to the white Gaussian noise formulation, a link that establishes the
information-theoretic connection between a continuous-time channel under the
Brownian motion formulation and its discrete-time counterparts has long been
missing. This paper is to fill this gap by establishing causality-preserving
connections between continuous-time Gaussian feedback/memory channels and their
associated discrete-time versions in the forms of sampling and approximation
theorems, which we believe will play important roles in the long run for
further developing continuous-time information theory.
As an immediate application of the approximation theorem, we propose the
so-called approximation approach to examine continuous-time white Gaussian
channels in the point-to-point or multi-user setting. It turns out that the
approximation approach, complemented by relevant tools from stochastic
calculus, can enhance our understanding of continuous-time Gaussian channels in
terms of giving alternative and strengthened interpretation to some long-held
folklore, recovering "long known" results from new perspectives, and rigorously
establishing new results predicted by the intuition that the approximation
approach carries
Solving the Closest Vector Problem in Time--- The Discrete Gaussian Strikes Again!
We give a -time and space randomized algorithm for solving the
exact Closest Vector Problem (CVP) on -dimensional Euclidean lattices. This
improves on the previous fastest algorithm, the deterministic
-time and -space algorithm of
Micciancio and Voulgaris.
We achieve our main result in three steps. First, we show how to modify the
sampling algorithm from [ADRS15] to solve the problem of discrete Gaussian
sampling over lattice shifts, , with very low parameters. While the
actual algorithm is a natural generalization of [ADRS15], the analysis uses
substantial new ideas. This yields a -time algorithm for
approximate CVP for any approximation factor .
Second, we show that the approximate closest vectors to a target vector can
be grouped into "lower-dimensional clusters," and we use this to obtain a
recursive reduction from exact CVP to a variant of approximate CVP that
"behaves well with these clusters." Third, we show that our discrete Gaussian
sampling algorithm can be used to solve this variant of approximate CVP.
The analysis depends crucially on some new properties of the discrete
Gaussian distribution and approximate closest vectors, which might be of
independent interest
On Practical Discrete Gaussian Samplers for Lattice-Based Cryptography
Lattice-based cryptography is one of the most promising branches of quantum resilient cryptography, offering versatility and efficiency. Discrete Gaussian samplers are a core building block in most, if not all, lattice-based cryptosystems, and optimised samplers are desirable both for high-speed and low-area applications. Due to the inherent structure of existing discrete Gaussian sampling methods, lattice-based cryptosystems are vulnerable to side-channel attacks, such as timing analysis. In this paper, the first comprehensive evaluation of discrete Gaussian samplers in hardware is presented, targeting FPGA devices. Novel optimised discrete Gaussian sampler hardware architectures are proposed for the main sampling techniques. An independent-time design of each of the samplers is presented, offering security against side-channel timing attacks, including the first proposed constant-time Bernoulli, Knuth-Yao, and discrete Ziggurat sampler hardware designs. For a balanced performance, the Cumulative Distribution Table (CDT) sampler is recommended, with the proposed hardware CDT design achieving a throughput of 59.4 million samples per second for encryption, utilising just 43 slices on a Virtex 6 FPGA and 16.3 million samples per second for signatures with 179 slices on a Spartan 6 device
Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes
We consider the problem of `discrete-time persistence', which deals with the
zero-crossings of a continuous stochastic process, X(T), measured at discrete
times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no
crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n,
where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D,
is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval
Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta
T) and conclude that experimental measurements of persistence for smooth
processes, such as diffusion, are less sensitive to the effects of discrete
sampling than measurements of a randomly accelerated particle or random walker.
We extend the matrix method developed by us previously [Phys. Rev. E 64,
015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and
the one-dimensional random acceleration problem. We also consider `alternating
persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure
Quasi maximum likelihood estimation for strongly mixing state space models and multivariate L\'evy-driven CARMA processes
We consider quasi maximum likelihood (QML) estimation for general
non-Gaussian discrete-ime linear state space models and equidistantly observed
multivariate L\'evy-driven continuoustime autoregressive moving average
(MCARMA) processes. In the discrete-time setting, we prove strong consistency
and asymptotic normality of the QML estimator under standard moment assumptions
and a strong-mixing condition on the output process of the state space model.
In the second part of the paper, we investigate probabilistic and analytical
properties of equidistantly sampled continuous-time state space models and
apply our results from the discrete-time setting to derive the asymptotic
properties of the QML estimator of discretely recorded MCARMA processes. Under
natural identifiability conditions, the estimators are again consistent and
asymptotically normally distributed for any sampling frequency. We also
demonstrate the practical applicability of our method through a simulation
study and a data example from econometrics
- …
