270,397 research outputs found

    Steerable Discrete Fourier Transform

    Full text link
    Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms

    Explicit Hermite-type eigenvectors of the discrete Fourier transform

    Full text link
    The search for a canonical set of eigenvectors of the discrete Fourier transform has been ongoing for more than three decades. The goal is to find an orthogonal basis of eigenvectors which would approximate Hermite functions -- the eigenfunctions of the continuous Fourier transform. This eigenbasis should also have some degree of analytical tractability and should allow for efficient numerical computations. In this paper we provide a partial solution to these problems. First, we construct an explicit basis of (non-orthogonal) eigenvectors of the discrete Fourier transform, thus extending the results of [7]. Applying the Gramm-Schmidt orthogonalization procedure we obtain an orthogonal eigenbasis of the discrete Fourier transform. We prove that the first eight eigenvectors converge to the corresponding Hermite functions, and we conjecture that this convergence result remains true for all eigenvectors.Comment: 21 pages, 4 figures, 1 tabl

    The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform

    Get PDF
    We define the quadratic algebra su(2)(alpha) which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2)(alpha). We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2)(alpha). It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform

    Fast complexified quaternion Fourier transform

    Full text link
    A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the discrete quaternion Fourier transform to the case where either or both of the signal/image and the transform kernel are complex quaternion-valued. It is shown how to compute the transform using four standard complex Fourier transforms and the properties of the transform are briefly discussed
    corecore