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Abstract

We define the quadratic algebra su(2)α which is a one-parameter deformation of the Lie
algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2)
(with representation label j, a positive integer) can be extended to representations of su(2)α.
We investigate a model of the finite one-dimensional harmonic oscillator based upon this al-
gebra su(2)α. It turns out that in this model the spectrum of the position and momentum
operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can
be determined in terms of Hahn polynomials. The operation mapping position wavefunctions
into momentum wavefunctions is studied, and this so-called discrete Hahn-Fourier transform is
computed explicitly. The matrix of this discrete Hahn-Fourier transform has many interesting
properties, similar to those of the traditional discrete Fourier transform.

1 Introduction

In standard theory of quantum mechanics, position and momentum operators are (essentially) self-
adjoint operators in some infinite-dimensional Hilbert space, satisfying the canonical commutation
relations. Quantum mechanics in finite dimensions has attracted much attention in recent years [1].
In a finite-dimensional Hilbert space, the canonical commutation relations no longer hold. Despite
this, finite-dimensional quantum mechanics has been useful in areas such as quantum computing
and quantum optics [2, 3]. The defining relations for a quantum mechanical oscillator in a finite-
dimensional Hilbert space are not unique [4], and several type of models have been proposed. Our
interest comes mainly from models related to some Lie algebra (or a deformation thereof). The finite
oscillator model that has been studied most extensively is based on the Lie algebra su(2) or so(3) in
the one-dimensional case [5–7]. In the case of a two-dimensional oscillator this has been generalized
by the same authors to so(4). Such finite oscillator models are of particular importance in optical
image processing [5], and more generally in models where only a finite number of eigenmodes can
exist. For example signal analysis dealing with a finite number of discrete sensors or data points led
to physical models realizing a one-dimensional finite oscillator [8–10]. In a previous paper [11], a new
model for the finite one-dimensional harmonic oscillator was proposed based on the algebra u(2)α, a
one-parameter deformation of the Lie algebra u(2). This u(2)α model offers an alternative position
and momentum spectrum compared to the su(2) model. Furthermore, the position wavefunctions
have simple expressions in terms of Hahn polynomials, with interesting properties related to those
of a parabose oscillator [11].
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For a one-dimensional finite oscillator, one considers three (essentially self-adjoint) operators: a
position operator q̂, its corresponding momentum operator p̂ and a (pseudo-) Hamiltonian Ĥ which
is the generator of time evolution. These operators should satisfy the Hamiltonian-Lie equations
(or the compatibility of Hamilton’s equations with the Heisenberg equations):

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, (1)

in units with mass and frequency both equal to 1, and ~ = 1. Furthermore, one requires [6]:

• all operators q̂, p̂, Ĥ belong to some (Lie) algebra (or superalgebra) A;

• the spectrum of Ĥ in (unitary) representations of A is equidistant.

The case with A = su(2) (or its enveloping algebra) has been treated considerably in a number
of papers [5–7]. The relevant representations are the common su(2) representations labelled by
an integer or half-integer j. In such a representation, the Hamiltonian is taken as Ĥ = J0 +
j + 1

2 , where J0 = Jz is the diagonal su(2) operator. Thus the spectrum of Ĥ is n + 1
2 (n =

0, 1, . . . , 2j). With q̂ = 1
2(J+ + J−) = Jx and p̂ = i

2(J+ − J−) = −Jy, the relations (1) are satisfied.
Clearly, q̂ and p̂ have a finite spectrum given by {−j,−j + 1, . . . ,+j} [6]. More important, the
position wavefunctions have been constructed, and are given by Krawtchouk functions (normalized
symmetric Krawtchouk polynomials). These discrete wavefunctions have interesting properties,
and their shape is reminiscent of those of the canonical oscillator [6]. This is explained by the fact
that under the limit j → ∞ the discrete wavefunctions coincide with the canonical wavefunctions
in terms of Hermite polynomials [6, 12].

In [11], the case with A = u(2)α was investigated (α > −1). For this one-parameter deformation
of u(2), only the representations labelled by a half-integer j survive as representations of u(2)α (so
only the even-dimensional representations). This led to an alternative model of the finite oscillator,
with the spectrum of Ĥ again given by n + 1

2 (n = 0, 1, . . . , 2j). For the operators q̂ and p̂, the
spectrum is again finite and equidistant in steps of one unit, except that there is a gap of size 2α+2
in the middle; explicitly, it is given by

−α− j − 1

2
,−α− j +

1

2
, . . . ,−α− 1;α+ 1, α+ 2, . . . , α+ j +

1

2
. (2)

An interesting result in [11] was that the position wavefunctions could be constructed and they
turned out to be normalized Hahn (or dual Hahn) polynomials. An investigation of these discrete
wavefunctions gave rise to remarkable plots, suggesting in fact a relation with the parabose oscilla-
tor. Indeed it was shown that under the limit j → ∞ the discrete wavefunctions coincide with the
parabose wavefunctions in terms of Laguerre polynomials [11].

Despite the novel results presented in [11], it remains somehow intriguing that the odd-dimen-
sional u(2) representations can not be deformed as u(2)α representations. In the present paper, we
present the solution to this problem. It turns out that one should consider a different one-parameter
deformation of su(2), involving only the three su(2) operators and a parity operator (and no central
element). This new deformation, denoted by su(2)α, is defined and it is shown that in this case the
odd-dimensional su(2) representations, labelled by an integer value j, can be deformed as su(2)α
representations. Using su(2)α as a model for the finite oscillator, yields the same spectrum of Ĥ
given by n+ 1

2 (n = 0, 1, . . . , 2j). The finite spectrum of the position and momentum operators q̂
and p̂ is however quite different, and given by

0, ±
√

k(2α+ k + 1), (k = 1, . . . , j).

The position (and momentum) wavefunctions are constructed, and turn out to be again Hahn
polynomials (in this case with parameters (α, α) or (α + 1, α+ 1)). These wavefunctions are once
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more discrete versions of the parabose wavefunctions, as a limit computation shows. A fascinating
question in this context is the relation between the position wavefunctions and the momentum
wavefunctions. In the canonical case, these functions are related through the Fourier transform.
Here, we show that these wavefunctions are related through a discrete version of the Fourier trans-
form, which we refer to as the discrete Hahn-Fourier transform. For readers primarily interested
in special functions, the computation of this discrete Hahn-Fourier transform is probably the most
attractive part. It involves a special case of a bilinear generating function (the Poisson kernel) for
dual Hahn polynomials.

The contents of the remaining sections is as follows: in section 2 the deformed algebra su(2)α
and its representations are constructed. In section 3 we use su(2)α as a model for the finite
oscillator, and determine in particular the spectrum of the position and momentum operators, and
their eigenvectors. The structure of these eigenvectors is studied in section 4, yielding position
and momentum wavefunctions. In section 5 we determine the operation that transforms position
wavefunction into momentum wavefunctions, the so-called discrete Hahn-Fourier transform F , and
its properties. The somewhat technical but interesting proof of the 4F3(1) form of the matrix
elements of F is given in section 6. Finally we give a summary of the results in section 7.

2 The algebra su(2)α and its representations

The Lie algebra su(2) [13, 14] can be defined by its basis elements J0, J+, J− with commutators
[J0, J±] = ±J± and [J+, J−] = 2J0. The non-trivial unitary representations of su(2), corresponding

to the star relations J†
0 = J0, J

†
± = J∓, are labelled [13,14] by a positive integer or half-integer j and

have dimension 2j+1. The action on a standard basis vectors |j,m〉 (with m = −j,−j+1, . . . ,+j)
is given by

J0|j,m〉 = m |j,m〉, J±|j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉.

The universal enveloping algebra of su(2) can be extended by a parity operator P with action
P |j,m〉 = (−1)j+m |j,m〉. This means that P commutes with J0, anticommutes with J+ and J−,
and P 2 = 1. This extended algebra can be deformed by a parameter α, leading to the definition of
su(2)α.

Definition 1 Let α be a parameter. The algebra su(2)α is a unital algebra with basis elements J0,
J+, J− and P subject to the following relations:

• P is a parity operator satisfying P 2 = 1 and

[P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0. (3)

• The su(2) relations are deformed as follows:

[J0, J±] = ±J±, (4)

[J+, J−] = 2J0 + 2(2α+ 1)J0P. (5)

Note that this is different from the u(2)α deformation introduced in [11]; in particular it does
not involve a central element. For the deformation u(2)α, the even-dimensional u(2) representations
(j half-integer) could be deformed. The current su(2)α is “complementary” in the sense that now
the odd-dimensional su(2) representations (j integer) can be deformed:
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Proposition 2 Let j be an integer (i.e. 2j is even), and consider the space Wj with basis vectors
|j,−j〉, |j,−j + 1〉, . . ., |j, j〉. Assume that α > −1. Then the following action turns Wj into an
irreducible representation space of su(2)α.

P |j,m〉 = (−1)j+m |j,m〉, (6)

J0|j,m〉 = m |j,m〉, (7)

J+|j,m〉 =
{

√

(j −m)(j +m+ 2α+ 2) |j,m+ 1〉, if j +m is even;
√

(j −m+ 2α+ 1)(j +m+ 1) |j,m+ 1〉, if j +m is odd,
(8)

J−|j,m〉 =
{

√

(j +m+ 2α+ 1)(j −m+ 1) |j,m− 1〉, if j +m is odd;
√

(j +m)(j −m+ 2α+ 2) |j,m− 1〉, if j +m is even.
(9)

The proof is essentially by direct computation, the same as [11, Proposition 2]. Note that the

representation given in this proposition is unitary under the star conditions P † = P , J†
0 = J0,

J†
± = J∓. Also note that for α = −1

2 , the deformation is trivial (both for the algebra and the
representations).

3 Using su(2)α as a model for the one-dimensional oscillator

Quite similar as in the non-deformed case [5] or in the u(2)α deformed case [11], let us choose the
position, momentum and Hamiltonian (representation dependent) operators as follows:

q̂ =
1

2
(J+ + J−), p̂ =

i

2
(J+ − J−), Ĥ = J0 + j +

1

2
. (10)

These operators satisfy (1). In the representation space Wj , Ĥ|j,m〉 = (m+ j+ 1
2)|j,m〉, therefore

the spectrum of Ĥ is linear and given by

n+
1

2
(n = 0, 1, . . . , 2j). (11)

From the actions (8)-(9), one finds

2q̂|j,m〉 =
√

(j +m)(j −m+ 2α+ 2) |j,m− 1〉+
√

(j −m)(j +m+ 2α+ 2) |j,m+ 1〉,
if j +m is even, and

2q̂|j,m〉 =
√

(j −m+ 1)(j +m+ 2α+ 1) |j,m− 1〉+
√

(j +m+ 1)(j −m+ 2α+ 1) |j,m+ 1〉,
if j +m is odd. The action of 2ip̂ is similar. In the (ordered) basis {|j,−j〉, |j,−j + 1〉, . . . , |j, j −
1〉, |j, j〉} of Wj , the operators 2q̂ and 2ip̂ take the matrix form

2q̂ =

















0 M0 0 · · · 0
M0 0 M1 · · · 0

0 M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 M2j−1 0

















≡ M q, (12)

2ip̂ =

















0 M0 0 · · · 0
−M0 0 M1 · · · 0

0 −M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 −M2j−1 0

















≡ Mp, (13)
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with

Mk =

{

√

(k + 1)(2j + 2α− k + 1), if k is odd;
√

(k + 2α+ 2)(2j − k), if k is even.
(14)

For these matrices the eigenvalues and eigenvectors can be constructed in terms of Hahn polynomi-
als. Hahn polynomials Qn(x;α, β,N) [15, 16] of degree n (n = 0, 1, . . . , N) in the variable x, with
parameters α > −1 and β > −1 are defined by [15,16]:

Qn(x;α, β,N) = 3F2

(−n, n+ α+ β + 1,−x

α+ 1,−N
; 1

)

, (15)

in terms of the generalized hypergeometric series 3F2 of unit argument [17, 18]. Their (discrete)
orthogonality relation reads [15, 16]:

N
∑

x=0

w(x;α, β,N)Ql(x;α, β,N)Qn(x;α, β,N) = h(n;α, β,N) δln, (16)

where

w(x;α, β,N) =

(

α+ x

x

)(

N + β − x

N − x

)

(x = 0, 1, . . . , N);

h(n;α, β,N) =
(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(N − n+ 1)nN !
.

We have used here the common notation for Pochhammer symbols [17,18] (a)k = a(a+ 1) · · · (a+
k − 1) for k = 1, 2, . . . and (a)0 = 1. Orthonormal Hahn functions Q̃ are determined by:

Q̃n(x;α, β,N) ≡
√

w(x;α, β,N)Qn(x;α, β,N)
√

h(n;α, β,N)
. (17)

Recall that dual Hahn polynomials have a similar expression. In fact, for x ∈ {0, 1, . . . , N} the
right hand side of (15) is the dual Hahn polynomial Rx(λ(n);α, β,N) of degree x in the variable
λ(n) = n(n+ α+ β + 1); see [15, 16] for their orthogonality relations.

In terms of these, the eigenvalues and (orthonormal) eigenvectors of M q can be constructed:

Proposition 3 Let M q ≡ 2q̂ be the tridiagonal (2j + 1) × (2j + 1)-matrix (12) and let U =
(Ukl)0≤k,l≤2j be the (2j + 1)× (2j + 1)-matrix with matrix elements:

U2i,j = (−1)iQ̃0(i;α, α, j), i ∈ {0, 1, . . . , j}; U2i+1,j = 0, i ∈ {0, . . . , j − 1}; (18)

U2i,j−k = U2i,j+k =
(−1)i√

2
Q̃k(i;α, α, j), i ∈ {0, 1, . . . , j}, k ∈ {1, . . . , j}; (19)

U2i+1,j−k = −U2i+1,j+k = −(−1)i√
2

Q̃k−1(i;α+ 1, α+ 1, j − 1), i ∈ {0, 1, . . . , j − 1},

k ∈ {1, . . . , j}. (20)

Then U is an orthogonal matrix:
UUT = UTU = I, (21)

the columns of U are the eigenvectors of M q, i.e.

M qU = UDq, (22)

where Dq = diag(ǫ0, ǫ1, . . . , ǫ2j) is a diagonal matrix containing the eigenvalues ǫk of M q:

ǫj−k = −2
√

k(2α+ k + 1), ǫj = 0, ǫj+k = 2
√

k(2α+ k + 1), (k = 1, . . . , j). (23)
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Proof. Using the orthogonality of the Hahn polynomials, and the explicit expressions (18)-(20),
a simple computation shows that (UTU)kl = δkl. Thus UTU = I, the identity matrix, and hence
UUT = I holds as well.

Now it remains to verify (22) and (23). By the form of M q:

(

M qU
)

ik
=

2j
∑

l=0

M q
ilUlk = Mi−1Ui−1,k +MiUi+1,k. (24)

We have to consider (24) in six distinct cases, according to i even or odd, and to k belonging to
{0, 1, . . . , j − 1}, to {j + 1, j + 2, . . . , 2j} or k = j. Let us consider the case that i is odd and
k ∈ {0, 1, . . . , j − 1}. Then, relabelling the indices appropriately, (14), (19) and (20) yield:

(M qU)2i+1,j−k = M2iU2i,j−k +M2i+1U2i+2,j−k

= (−1)i
√
2
√

(α+ i+ 1)(j − i)Q̃k(i;α, α, j) + (−1)i+1
√
2
√

(i+ 1)(j + α− i)Q̃k(i+ 1;α, α, j)

= (−1)i
√
2

√

(α+ 1)i+1(α+ 1)j−i

i!(j − i− 1)!h(k;α, α, j)
[Qk(i;α, α, j)−Qk(i+ 1;α, α, j)].

At this point, the forward shift operator formula for Hahn polynomials [15, (9.5.6)] can be applied
and yields

(M qU)2i+1,j−k = (−1)i
√
2

√

(α+ 1)i+1(α+ 1)j−i

i!(j − i− 1)!h(k;α, α, j)

k(k + 2α+ 1)

(α+ 1)j
Qk−1(i;α+ 1, α+ 1, j − 1)

= −2
√

k(k + 2α+ 1)U2i+1,j−k = ǫj−kU2i+1,j−k =
(

UDq
)

2i+1,j−k
.

For the other five cases, the computations are similar and for some of them the backward shift
operator formula for Hahn polynomials [15, (9.5.8)] is applied. 2

Note that in the case of u(2)α [11], the equation corresponding to (24) was related to two new
difference equations for Hahn polynomials [19, 20]. Here, the equation is just corresponding to
known forward or backward shift operator formulas. The above proposition yields in particular the
spectrum of the position operator:

Proposition 4 The 2j + 1 eigenvalues q of the position operator q̂ in the representation Wj are
given by

−
√

j(2α+ j + 1),−
√

(j − 1)(2α+ j), . . . ,−
√
2α+ 2; 0;

√
2α+ 2, . . . ,

√

j(2α+ j + 1). (25)

It will be appropriate to label these q̂-eigenvalues as qk, where k = −j,−j + 1, . . . ,+j, so

q±k = ±
√

k(2α+ k + 1), k = 0, 1, . . . , j.

One can compare the spectrum of q̂ with that in related models, see Figure 1. In the non-deformed
case (α = −1

2 , or the su(2) model), the spectrum is just equidistant as already mentioned in the
introduction. In the case of u(2)α (and j half-integer), the spectrum is given by (2): apart from an
extra gap of size 2α+ 2 in the middle, it is again equidistant. In the current case of su(2)α (and j
integer), the spectrum given by Proposition 4 is not equidistant.

Essentially the eigenvectors of (12) have components proportional to Hahn polynomials with
parameters (α, α) when the component has even index and with parameters (α + 1, α + 1) when
the component has odd index. It is convenient to introduce a notation for these eigenvectors: the

6



orthonormal eigenvector of the position operator q̂ in Wj for the eigenvalue qk, denoted by |j, qk),
is given in terms of the standard basis by

|j, qk) =
j
∑

m=−j

Uj+m,j+k|j,m〉. (26)

Let us now turn our attention to the momentum operator p̂. Up to signs, the matrix Mp is the
same as the matrix M q. The analysis of its eigenvalues and eigenvectors is thus very similar. We
present just the final result here:

Proposition 5 Let Mp ≡ 2ip̂ be the tridiagonal (2j + 1) × (2j + 1)-matrix (13) and let V =
(Vkl)0≤k,l≤2j be the (2j + 1)× (2j + 1)-matrix with matrix elements

Vk,l = −ik+1Ukl, (27)

where U is the matrix determined by (18)-(20). Then V is a unitary matrix, V V † = V †V = I.
The columns of V are the eigenvectors of Mp, i.e.

MpV = V Dp, (28)

where Dp is a diagonal matrix containing the eigenvalues εk of Mp:

Dp = diag(ε0, ε1, . . . , ε2j),

εj−k = −2i
√

k(2α+ k + 1), ǫj = 0, ǫj+k = 2i
√

k(2α+ k + 1) (k = 1, . . . , j). (29)

Hence the 2j +1 eigenvalues p of the momentum operator p̂ in the representation Wj are given
by

−
√

j(2α+ j + 1),−
√

(j − 1)(2α+ j), . . . ,−
√
2α+ 2; 0;

√
2α+ 2, . . . ,

√

j(2α+ j + 1), (30)

in other words, the momentum operator p̂ has the same spectrum as the position operator q̂. We
shall denote these p̂-eigenvalues by pk, where k = −j,−j + 1, . . . ,+j, so

p±k = ±
√

k(2α+ k + 1), k = 0, 1, . . . , j.

The normalized eigenvector of the momentum operator p̂ in Wj for the eigenvalue pk, denoted by
|j, pk), is then given by

|j, pk) =
j
∑

m=−j

Vj+m,j+k|j,m〉. (31)

Finally, it is worth mentioning another property of the matrix elements of V , that follows from
the explicit expressions (27), (18)-(20) and the orthogonality properties of the Hahn polynomials:

V TV =











0 · · · 0 −1
0 · · · −1 0
... . .

. ...
...

−1 · · · 0 0











. (32)

Note also that from (27) it follows that

V = JU where J = diag(−i, 1, i,−1, . . .), (33)

and the sequence (−i, 1, i,−1) is repeated, ending with i or −i (since the matrices are odd-
dimensional). One can also write J = −i diag(i0, i1, i2, i2, . . . , i2j).
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4 Position and momentum wavefunctions and their properties

The position (resp. momentum) wavefunctions of the su(2)α finite oscillator are the overlaps be-
tween the q̂-eigenvectors (resp. p̂-eigenvectors) and the Ĥ-eigenvectors (or equivalently, the J0-

eigenvectors |j,m〉). Let us denote them by Φ
(α)
j+m(q) (resp. Ψ

(α)
j+m(p) ), where m = −j,−j +

1, . . . ,+j, and where q (resp. p) assumes one of the discrete values qk (resp. pk) (k = −j,−j +
1, . . . ,+j). Therefore, in the notation of the previous section:

Φ
(α)
j+m(qk) = 〈j,m|j, qk) = Uj+m,j+k, (34)

Ψ
(α)
j+m(pk) = 〈j,m|j, pk) = Vj+m,j+k. (35)

Let us consider the explicit form of these wavefunctions, first for the position variable. For j +m
even, j +m = 2n, and for positive q-values one has

Φ
(α)
2n (qk) =

(−1)n√
2

Q̃k(n;α, α, j), n = 0, 1, . . . , j, k = 1, . . . , j, (36)

or equivalently:

Φ
(α)
2n (qk) =

(−1)n√
2

√

w(n;α, α, j)

h(k;α, α, j)
3F2

(−k, k + 2α+ 1,−n

α+ 1,−j
; 1

)

=
(−1)n√

2

√

w(n;α, α, j)

h(k;α, α, j)
Rn

(

q2k;α, α, j
)

, q2k = k(2α+ k + 1), (37)

where Rn (λk;α, α, j) is a dual Hahn polynomial [15, 16] of degree n in the variable λ(k) ≡ q2k =
k(2α+ k+1). In a similar way, one finds for j +m odd, j +m = 2n+1, and for positive q-values,
that

Φ
(α)
2n+1(qk) =

(−1)n√
2

√

w(n;α+ 1, α+ 1, j − 1)

h(k − 1;α+ 1, α+ 1, j − 1)
3F2

(−k + 1, k + 2α+ 2,−n

α+ 2,−j + 1
; 1

)

=

√

w(n;α+ 1, α+ 1, j − 1)

h(k − 1;α+ 1, α+ 1, j − 1)
Rn

(

q2k − 2(α+ 1);α+ 1, α+ 1, j − 1
)

. (38)

For q = 0 or negative q-values, the expressions are of course analogous, according to (18)-(20).
Before studying some special properties of these position wavefunctions, and determining the

momentum wavefunctions, let us consider plots of these functions for some α-values. We choose

a fixed value of j, say j = 30, and plot some of the wavefunctions Φ
(α)
n (q) for certain values of

α. Since α = −1
2 is a special case (where su(2)α reduces to su(2)), there are three cases to be

considered: −1 < α < −1
2 , α = −1

2 and α > −1
2 . In Figure 2 we take α = −1

2 , α = −0.7 and

α = 2 respectively. We also plot in each case the ground state Φ
(α)
0 (q), some low energy states

Φ
(α)
1 (q) and Φ

(α)
2 (q), and the highest energy state. The plots are similar as in the u(2)α case (where

j is half-integer). The most obvious difference is that 0 is part of the spectrum now. Another
difference, but more difficult to see in the plots, is that the spectrum is not equidistant for α 6= −1

2 .
For α = −1

2 , these plots coincide with the ones given in the su(2) model [5, 6]. The wavefunctions

Φ
(−1/2)
n (q) are Krawtchouk functions. This follows also from the following transformations of 3F2

8



series to 2F1 series when α = −1
2 , according to [5, (48)]

3F2

(−k, k,−n

1/2,−j
; 1

)

= (−1)n
(

2j
2n

)

(

j
n

) 2F1

(−2n,−j − k

−2j
; 2

)

, (39)

3F2

(−k + 1, k + 1,−n

3/2,−j + 1
; 1

)

= −(−1)n

2k

(

2j
2n+1

)

(

j−1
n

) 2F1

(−2n− 1,−j − k

−2j
; 2

)

. (40)

For α 6= −1
2 , the plots are comparable with the parabose wavefunctions [11]. One can indeed

again study the behaviour of the discrete wavefunctions Φ
(α)
n (q) when the representation parameter

j tends to infinity. In this process, one should pass from a discrete position variable q to a continuous

variable x. This can be done by putting q = j1/2x and then compute the limit of j1/4Φ
(α)
n (q) for

j → ∞. The actual computation is similar to the limit computation performed in [11, §4], so we
shall not give any details. Note that, due to (37),

q2 = (k + α+
1

2
)2 − (α+

1

2
)2, or k = −α− 1

2
±
√

q2 + (α+
1

2
)2. (41)

Using this last expression for k in the 3F2 expression of (37), and replacing herein q by j1/2x, the
limit can be computed and yields:

lim
j→∞

j1/4Φ
(α)
2n (j1/2x) = (−1)n

√

n!

Γ(α+ n+ 1)
|x|α+1/2e−x2/2L(α)

n (x2), (42)

in terms of Laguerre polynomials. Similarly, one finds from (38):

lim
j→∞

j1/4Φ
(α)
2n+1(j

1/2x) = (−1)n

√

n!

Γ(α+ n+ 2)
x|x|α+1/2e−x2/2L(α+1)

n (x2). (43)

The functions in the right hand side of (42)-(43) are known: they are the wavefunctions of the
parabose oscillator [21–23] with parameter a = α+ 1 > 0, see the appendix of [11].

It remains here to consider the momentum wavefunctions. Due to the fact that the spectrum
of q̂ and p̂ is the same, and due to the similarity of the matrix of eigenvectors V (compared to U),
the expressions are analogous and we give only the final result here:

Ψ
(α)
2n (pk) = − i√

2

√

w(n;α, α, j)

h(k;α, α, j)
Rn

(

p2k;α, α, j
)

, p2k = k(2α+ k + 1), (44)

Ψ
(α)
2n+1(pk) =

√

w(n;α+ 1, α+ 1, j − 1)

h(k − 1;α+ 1, α+ 1, j − 1)
Rn

(

p2k − 2(α+ 1);α+ 1, α+ 1, j − 1
)

. (45)

5 The discrete Hahn-Fourier transform

In canonical quantum mechanics, the momentum wavefunction (in L2(R)) is given by the Fourier
transform of the position wavefunction (and vice versa):

Ψ(p) =
1√
2π

∫

e−ipqΦ(q)dq.

9



In the current case, we are dealing with discrete wavefunctions, and we should look for an analogue
of this. In terms of the notation of the previous section, let

Φ(qk) =











Φ0(qk)
Φ1(qk)

...
Φ2j(qk)











, Ψ(pk) =











Ψ0(pk)
Ψ1(pk)

...
Ψ2j(pk)











(k = −j, . . . ,+j). (46)

So it is natural to define the discrete Fourier transform in this case as the matrix F = (Flk)−j≤l,k≤+j

relating these two wavefunctions. In other words:

Ψ(pl) =

j
∑

k=−j

Fkl Φ(qk). (47)

As this generalized discrete Fourier transform maps Hahn polynomials into Hahn polynomials, we
shall refer to it as the discrete Hahn-Fourier transform. By (34)-(35), the columns of V consist of
the column vectors Ψ(pk) (k = −j..,+j) and similarly for the matrix U . So (47) actually means
that V = UF , or:

F = UTV. (48)

Using the explicit matrix elements from U and V , (18)-(20) and (27), this leads to following form
of the matrix elements of F :

Fj−k,j∓l = Fj+k,j±l = − i

2

j
∑

n=0

(−1)nQ̃k(n;α, α, j)Q̃l(n;α, α, j) (49)

± 1

2

j−1
∑

n=0

(−1)nQ̃k−1(n;α+ 1, α+ 1, j − 1)Q̃l−1(n;α+ 1, α+ 1, j − 1), k, l = 1, . . . , j;

Fj∓k,j = Fj,j∓k = − i√
2

j
∑

n=0

(−1)nQ̃k(n;α, α, j)Q̃0(n;α, α, j), k = 1, . . . , j; (50)

Fjj = −i

j
∑

n=0

(−1)nQ̃2
0(n;α, α, j). (51)

In the following section, we shall determine explicit expressions for the above matrix elements.
But before that, we can already summarize some properties of the discrete Hahn-Fourier transform
matrix F .

Proposition 6 The (2j+1)×(2j+1)-matrix F is symmetric, F T = F , and unitary, F †F = FF † =
I. Furthermore, it satisfies F 4 = I, so its eigenvalues are ±1,±i. A set of orthonormal eigenvectors
of F is given by the rows of U , determined in Proposition 3. The multiplicity of the eigenvalues
depends on the parity of j. When j = 2n is even, then the multiplicity of −i, 1, i,−1 is n+1, n, n, n
respectively. When j = 2n + 1 is odd, then the multiplicity of −i, 1, i,−1 is n + 1, n + 1, n + 1, n
respectively.

Proof. The symmetry of F is easily seen from the expressions (49)-(51). The unitarity of F follows
from (48), the orthogonality of the real matrix U and the unitarity of V . Again using (48) and
the orthogonality of U , one finds F 2 = F TF = V TUUTV = V TV . But the explicit form of V TV
is known, see (32). Since (V TV )2 = I, the result F 4 = I follows. So the eigenvalues can only be
±1,±i. Using again (48) and (33), one sees that F = UTV = UTJU , or

FUT = UTJ .

10



In other words, the columns of UT (or the rows of U) form a set of orthonormal eigenvectors of
F , and the eigenvalues of F are found in the diagonal matrix J . From the explicit form of J , the
statement of the multiplicities follows. 2

Note that these properties are similar to those of the common discrete Fourier transform [9,24].
For the case α = −1

2 , the matrix F was already studied in [9]. In that special case, the position and
momentum wavefunctions (46) are in terms of Krawtchouk polynomials, and the corresponding
discrete Fourier transform can be referred to as the discrete Krawtchouk-Fourier transform. The
matrix elements of F are in that special case again Krawtchouk functions [9].

One of our main results is the explicit computation of the elements of F for general α. Note
from (49)-(51) that all these matrix elements are of the form

∑j
n=0(−1)nQ̃k(n;α, α, j)Q̃l(n;α, α, j),

with 0 ≤ k, l ≤ j. So apart from a factor (h(k;α, α, j)h(l;α, α, j))−1/2, this expression is equal to:

S(k, l, α, j) =

j
∑

n=0

(−1)nw(n;α, α, j)Qk(n;α, α, j)Ql(n;α, α, j) (52)

=

j
∑

n=0

(−1)n
(

α+ n

n

)(

α+ j − n

j − n

)

Qk(n;α, α, j)Ql(n;α, α, j) (53)

=

j
∑

n=0

(−1)n
(

α+ n

n

)(

α+ j − n

j − n

)

Rn(λ(k);α, α, j)Rn(λ(l);α, α, j). (54)

In the form (52), the right hand side is just like the orthogonality relation of Hahn polynomials,
except for the extra factor (−1)n. In the form (54), one can see that S(k, l, α, j) is a special case
of the Poisson kernel (or a bilinear generating function) for dual Hahn polynomials:

j
∑

n=0

tn
(

α+ n

n

)(

β + j − n

j − n

)

Rn(λ(k);α, β, j)Rn(λ(l);α, β, j).

However, as far as we know a closed form expression for this Poisson kernel is not known. In fact, the
best one can do is re-express the product Rn(λ(k);α, β, j)Rn(λ(l);α, β, j) into a 8F7 hypergeometric
series (following the approach of [25, §8.3], where the q-analogue is given). Here we will show that
this Poisson kernel does have a simple expression when β = α and t = −1.

We shall prove the following result, yielding the explicit expression for the discrete Hahn-Fourier
transform matrix F :

Theorem 7 The special Poisson kernel for dual Hahn polynomials S(k, l, α, j), where k and l are
integers with 0 ≤ k, l ≤ j, satisfies

S(k, l, α, j) = (−1)k+l+jS(k, l, α, j), (55)

11



so it is 0 whenever k + l + j is odd. For the other cases, it is given by:

S(2K, 2L, α, 2J) =
22J(12)J−K(12)J−L(α+ 1)J(α+ J + 1)K(α+ J + 1)L

(2J)!(12)J

× 4F3

(−K,K + α+ 1
2 ,−L,L+ α+ 1

2

α+ J + 1, α+ 1,−J
; 1

)

(56)

S(2K + 1, 2L+ 1, α, 2J) =
22J(12)J−K(12)J−L(α+ 1)J+1(α+ J + 2)K(α+ J + 2)L

(2J)!J(12)J

× 4F3

(−K,K + α+ 3
2 ,−L,L+ α+ 3

2

α+ J + 2, α+ 1,−J + 1
; 1

)

(57)

S(2K, 2L+ 1, α, 2J + 1) =
22J+1(12)J−K+1(

1
2)J−L(α+ 1)J+1(α+ J + 2)K(α+ J + 2)L

(2J + 1)!(12)J+1

× 4F3

(−K,K + α+ 1
2 ,−L,L+ α+ 3

2

α+ J + 2, α+ 1,−J
; 1

)

(58)

and finally S(2K + 1, 2L, α, 2J + 1) is given by replacing K and L in the right hand side of (58).

First of all, note that S(k, l, α, j) = 0 for k + l + j odd implies that in expression (49) only one of
the two parts survive (either the real part or else the imaginary part). Together with Theorem 7
this implies that each element Flk is, up to a factor, equal to a terminating Saalschützian 4F3(1)
series. In other words, up to a factor each Flk is also a Racah polynomial [15]. The unitarity of
the matrix F does not lead to any new relations for Racah polynomials, but just follows from their
discrete orthogonality relations.

Before discussing the proof of Theorem 7, let us examine what happens to this discrete Hahn-
Fourier transform in the limit when j → ∞. Suppose that j = 2J is even, and let us first consider
the limit of the imaginary matrix elements of F . When k and l are even (j = 2J , k = 2K and
l = 2L), then according to (49):

Fj+k,j±l = − i

2
(h(k;α, α, j)h(l;α, α, j))−1/2S(2K, 2L, α, 2J),

with S(2K, 2L, α, 2J) given by (56). Just as for the limit computation of the wavefunctions, see (41),
it is necessary to make the replacements

k =

√

q2k + (α+
1

2
)2 − (α+

1

2
), l =

√

p2l + (α+
1

2
)2 − (α+

1

2
),

and put qk = j1/2x and pl = j1/2p in the above expression. After doing this, the limit of the 4F3

series appearing in S(2K, 2L, α, 2J) is fairly easy to determine by termwise computation:

lim
j→∞

4F3

(

−k
2 ,

k
2 + α+ 1

2 ,− l
2 ,

l
2 + α+ 1

2

α+ j
2 + 1, α+ 1,− j

2

; 1

)

= 0F1

( −
α+ 1

;−1

4
x2p2

)

.

The last expression is proportional to Jα(xp), where Jα is the Bessel function of the first kind [26].
The limit of the factors in front of the 4F3 series are elementary but a bit more tedious to compute,
and we shall not give the details of this computation. Similarly, one has to determine the limit of
the real matrix elements of F . Adding both contributions, one finds:

lim
j→∞

j1/2Fj+k,j±l =
1

2

(

|xp|1/2Jα(|xp|) + ixp|xp|−1/2Jα+1(|xp|)
)

.

12



The function in the right hand side is known: it is the kernel of the generalized Fourier transform,
studied by Mukunda et al in the context of the parabose oscillator [21]. So one can conclude that
our discrete Hahn-Fourier transform tends to the generalized Fourier transform of [21] for large
values of j.

6 Computation of the discrete Hahn-Fourier transform matrix el-

ements

The purpose of this section is the proof of Theorem 7. In fact, we shall show (55) and (56); the
proof of (57) and (58) is analogous.

Let us first collect some known transformation formulas for hypergeometric series. The first is
Thomae’s transformation of a terminating Saalschützian 4F3(1) series [18, (2.4.1.7)], [17, (7.2.1)]:

4F3

(

a, b, c,−N

e, f, g
; 1

)

=
(f − c)N (e+ f − a− b)N
(f)N (e+ f − a− b− c)N

4F3

(

e− a, e− b, c,−N

e, e+ f − a− b, e+ g − a− b
; 1

)

(59)

where e + f + g = 1 + a + b + c − N . For the Hahn polynomials appearing in (52), the following
transformation formula holds [27, p. 186]:

Qk(x;α, α,N) = (−1)kQk(N − x;α, α,N). (60)

In the same paper [27, (3.18)-(3.19)], one can find the following 4F3 expressions for Hahn polyno-
mials with parameter β = α:

Q2k(x;α, α,N) = 4F3

(−k, k + α+ 1
2 ,−x, x−N

α+ 1,−N/2, (1−N)/2
; 1

)

, (61)

Q2k+1(x;α, α,N) =
N − 2x

N
4F3

( −k, k + α+ 3
2 ,−x, x−N

α+ 1, (1−N)/2, (2−N)/2
; 1

)

. (62)

Next, we need an equation that goes back to a classical identity for 6j-coefficients. For 6j-
coefficients of su(2), the following holds [28, (9.8.4)]:

∑

x

(−1)p+q+x(2x+ 1)

{

a

c

b

d

x

p

}{

a

d

b

c

x

q

}

=

{

a

b

c

d

q

p

}

. (63)

It turns out that we need the corresponding identity for 6j-coefficients of positive discrete series
representations of su(1, 1), which reads:

∑

j23

(−1)j13+j23−j′ Uk1,k2,k12
k3,k,k23

Uk1,k3,k13
k2,k,k23

= Uk2,k1,k12
k3,k,k13

. (64)

Herein, Uk1,k2,k12
k3,k,k23

is the standard notation for the Racah coefficient of su(1, 1) [29]. In (64), k1, k2
and k3 are su(1, 1) representation labels (i.e. they are positive real numbers), and in a common
notation [29]

k12 = k1 + k2 + j12, k = k12 + k + 3 + j′, k13 = k1 + k3 + j13, k23 = k2 + k3 + j23,

with j12, j
′, j13 and j23 all nonnegative integers. The summation in the right hand side of (64)

runs over all j23 with 0 ≤ j23 ≤ j′ + j12. Using the explicit expression in terms of a 4F3(1) series
for the Racah coefficients in (64), given by [29, (4.41)], and making the following replacements:

(j′, j12, j13) −→ (p, q, r), (
k1
2
,
k2
2
,
k3
2
) −→ (a, b, c), j23 −→ n,
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one arrives at the following identity between terminating Saalschützian 4F3(1) series:

p+q
∑

n=0

(

p+ q

n

)

(b+ c+ 2n− 1)

(b+ c+ n− 1)

(b+ c)n(a+ b+ c+ p+ q − 1)n
(b+ c+ p+ q)n(1− a− p− q)n

× 4F3

(−n, n+ b+ c− 1,−q, q + a+ b− 1

b, a+ b+ c+ p+ q − 1,−p− q
; 1

)

4F3

(−n, n+ b+ c− 1,−r, r + a+ c− 1

c, a+ b+ c+ p+ q − 1,−p− q
; 1

)

= (−1)p−r (b+ c)p+q(a)r(a)q
(a)p+q(b)q(c)r

4F3

(−q, q + a+ b− 1,−r, r + a+ c− 1

a, a+ b+ c+ p+ q − 1,−p− q
; 1

)

. (65)

This is not yet in the form needed for our proof of Theorem 7. But after performing Thomae’s
transformation (59) on the 2nd and 3rd 4F3(1) series appearing in (65), and replacing r by p+q−r,
we have the following:

Lemma 8 Let p, q and r be nonnegative integers, and a, b and c arbitrary parameters, then

p+q
∑

n=0

(

p+ q

n

)

(b+ c+ 2n− 1)

(b+ c+ n− 1)

(b+ c)n(b)n
(c)n(b+ c+ p+ q)n

× 4F3

(−n, n+ b+ c− 1,−q, q + a+ b− 1

b, a+ b+ c+ p+ q − 1,−p− q
; 1

)

× 4F3

(−n, n+ b+ c− 1,−r, r + 1− a− c− 2p− 2q

b, 1− a− p− q,−p− q
; 1

)

=(−1)r
(b+ c)p+q(1− c− p− q)r

(c)p(a+ b+ c+ p+ q − 1)q(1− a− p− q)r

× 4F3

(−q, q + a+ b− 1,−r, r + 1− a− c− 2p− 2q

b, 1− c− p− q,−p− q
; 1

)

. (66)

Note that the identities (65)-(66) show at first sight some similarity with the expansion formulas
constructed in [30] (or some q-analogues in [31]); they turn out to be quite different however.

We now come to the final part of this section:
Proof of Theorem 7. First of all, from (52), note the symmetry S(l, k, α, j) = S(k, l, α, j).
Starting from (53), using (60) for Qk and Ql, and then reversing the order of summation (i.e.
replace n by n− j), one finds (55). This implies that S(k, l, α, j) = 0 whenever k+ l+ j is odd. So
we need to simplify the expression only when k + l + j is even. We shall do this explicitly in the
case that k, l and j are even: k = 2K, l = 2L and j = 2J , with K, L and J nonnegative integers
(the other three cases are similar). So we need to compute

S(2K, 2L, α, 2J) =
2J
∑

n=0

(−1)n
(

α+ n

n

)(

α+ 2J − n

2J − n

)

Q2K(n;α, α, 2J)Q2L(n;α, α, 2J). (67)

Using (61), this can be written as S(2K, 2L, α, 2J) =
∑2J

n=0 Tn(K,L), where

Tn(K,L) = (−1)n
(

α+ n

n

)(

α+ 2J − n

2J − n

)

4F3

(

−K,K + α+ 1
2 ,−n, n− 2J

α+ 1,−J,−J + 1
2

; 1

)

× 4F3

(

−L,L+ α+ 1
2 ,−n, n− 2J

α+ 1,−J,−J + 1
2

; 1

)

. (68)

Making an appropriate replacement of the summation variable, it is easy to see that

2J
∑

n=J

Tn(K,L) =
J
∑

n=0

Tn(K,L),
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hence we can split the total sum
∑2J

n=0 Tn(K,L) in two equal parts; taking care of the overlapping
middle term, there comes

S(2K, 2L, α, 2J) = 2

(

J−1
∑

n=0

Tn(K,L) +
1

2
TJ(K,L)

)

. (69)

In order to perform the summation in the right hand side of (69), one can make the following
substitution in (66):

p = J −K, q = K, r = L, a =
1

2
, b = α+ t, c = −2J − α, (70)

and then take the limit t → 1 (in fact, for all terms in (66) one can immediately take t = 1, except
for the term with n = p + q = J the limit process is actually necessary). Consider, after the
substitution (70), the nth term in the left hand side of (66), with 0 ≤ n < p+q = J : the coefficient
in front of the two 4F3(1)’s becomes:

(2J)!

(α+ 1)2J
(−1)n

(

α+ n

n

)(

α+ 2J − n

2J − n

)

.

Consider similarly the term with n = p+ q = J ; here the coefficient becomes, when t → 1:

1

2

(2J)!

(α+ 1)2J
(−1)J

(

α+ J

J

)(

α+ J

J

)

.

Furthermore, it is easy to see that under this substitution (70) and t → 1 the two 4F3(1)’s in the

left hand side of (66) become the 4F3(1) expressions of (68). Thus, up to the coefficient (2J)!
(α+1)2J

,

the right hand side of (69) can be summed according to (66), and one finds, after simplifications:

S(2K, 2L, α, 2J) =
22J(12)J−K(12)J−L(α+ 1)J(α+ J + 1)K(α+ J + 1)L

(2J)!(12)J

× 4F3

(−K,K + α+ 1
2 ,−L,L+ α+ 1

2

α+ J + 1, α+ 1,−J
; 1

)

,

proving (56). 2

7 Summary

The most popular finite oscillator model, especially for applications in quantum optics, is based on
the Lie algebra su(2) or so(3) [5–7]. The dimension of the model depends on the su(2) representation
label j, which is an integer or half-integer positive number. Its mathematical properties have been
studied well, in particular the properties of the wavefunctions given by Krawtchouk functions.
These wavefunctions have interesting plots, and in the limit j → ∞ these discrete wavefunctions
tend to the continuous canonical oscillator wavefunctions. The discrete Fourier transform turning
position wavefunctions into momentum wavefunctions has also been investigated in this case [9].

A first type of deformation of this su(2) model was offered by its q-deformation. The suq(2)
model for the finite oscillator was investigated in [32, 33]. The main properties are: the position
operator has a discrete anharmonic spectrum, and the wavefunctions are given in terms of dual
q-Krawtchouk polynomials [33].

We have now considered two different type of deformations of the su(2) model, closely related
to each other. The first deformation u(2)α was given in [11] and allows a deformation of the even-
dimensional representations only (j half-integer). The second deformation su(2)α was the topic

15



of this paper, and allows a deformation of the odd-dimensional representations only (j integer).
Both cases have a deformation parameter α > −1 and for α = −1

2 they reduce to the nondeformed
su(2) model. The (discrete) spectrum of the position operator can be constructed explicitly in the
deformed algebras. In the case of u(2)α it is equidistant except for an extra shift in the middle of the
spectrum. In the case of su(2)α it is no longer equidistant but has the simple form ±

√

k(k + 2α+ 1)
(k = 0, 1, . . . , j). For k sufficiently large, this behaves like ±(k+α+ 1

2), so it tends to an equidistant
distribution for large k.

The position and momentum wavefunctions have been constructed explicitly for the deformed
models. They are given in terms of Hahn polynomials. For u(2)α, the even wavefunctions are nor-
malized Hahn polynomials with parameters (α, α+1), and the odd wavefunctions with parameters
(α + 1, α). For su(2)α, the even wavefunctions are normalized Hahn polynomials with parameters
(α, α), and the odd wavefunctions with parameters (α+1, α+1). The plots of these discrete wave-
functions have nice properties, and in both cases they tend to the parabose wavefunctions when j
is large. For α → −1

2 they tend to the Krawtchouk wavefunctions of the su(2) model; and of course
for α → −1

2 and j → ∞ they tend to the canonical oscillator wavefunctions in terms of Hermite
polynomials.

An interesting extra object studied in this paper is the operation that transforms position
wavefunctions into momentum wavefunctions, i.e. the discrete analogue of the Fourier transform.
For the case of su(2)α, this discrete Hahn-Fourier transform has been constructed explicitly, and is
determined by a matrix F . This matrix shares many classical properties with the common discrete
Fourier transform matrix. In fact, it has the extra interesting feature that there is a natural basis
of eigenvectors of F . The main computational result of the paper is the proof that the matrix
elements of F have a simple form in terms of terminating Saalschützian 4F3(1) series, i.e. in terms
of Racah polynomials. Note that for u(2)α this Hahn-Fourier matrix was not determined in [11],
but knowing the results for su(2)α it should be a routine computation to do this.
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(a)

(b)

(c)

Figure 1: Plots of a typical spectrum of the position operator, (a) in the case of the su(2) model,
(b) in the case of the u(2)α model, and (c) in the case of the su(2)α model.
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Figure 2: Plots of the discrete wavefunctions Φ
(α)
n (q) in the representation with j = 30. The four

top figures are for α = −1/2, the middle figures for α = −0.7, and the four bottom figures for
α = 2. In each case, we plot the wavefunctions for n = 0, 1, 2, 60.
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