9 research outputs found

    A modified discrepancy principle to attain optimal convergence rates under unknown noise

    Full text link
    We consider a linear ill-posed equation in the Hilbert space setting. Multiple independent unbiased measurements of the right hand side are available. A natural approach is to take the average of the measurements as an approximation of the right hand side and to estimate the data error as the inverse of the square root of the number of measurements. We calculate the optimal convergence rate (as the number of measurements tends to infinity) under classical source conditions and introduce a modified discrepancy principle, which asymptotically attains this rate

    Beyond the Bakushinskii veto: Regularising linear inverse problems without knowing the noise distribution

    Full text link
    This article deals with the solution of linear ill-posed equations in Hilbert spaces. Often, one only has a corrupted measurement of the right hand side at hand and the Bakushinskii veto tells us, that we are not able to solve the equation if we do not know the noise level. But in applications it is ad hoc unrealistic to know the error of a measurement. In practice, the error of a measurement may often be estimated through averaging of multiple measurements. We integrated that in our anlaysis and obtained convergence to the true solution, with the only assumption that the measurements are unbiased, independent and identically distributed according to an unknown distribution.Comment: 22 pages, 3 figure

    Importance Sampling: Intrinsic Dimension and Computational Cost

    Get PDF
    The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.Comment: Statistical Scienc

    Random Inverse Problems Over Graphs: Decentralized Online Learning

    Full text link
    We establish a framework of random inverse problems with real-time observations over graphs, and present a decentralized online learning algorithm based on online data streams, which unifies the distributed parameter estimation in Hilbert space and the least mean square problem in reproducing kernel Hilbert space (RKHS-LMS). We transform the algorithm convergence into the asymptotic stability of randomly time-varying difference equations in Hilbert space with L2-bounded martingale difference terms and develop the L2 -asymptotic stability theory. It is shown that if the network graph is connected and the sequence of forward operators satisfies the infinitedimensional spatio-temporal persistence of excitation condition, then the estimates of all nodes are mean square and almost surely strongly consistent. By equivalently transferring the distributed learning problem in RKHS to the random inverse problem over graphs, we propose a decentralized online learning algorithm in RKHS based on non-stationary and non-independent online data streams, and prove that the algorithm is mean square and almost surely strongly consistent if the operators induced by the random input data satisfy the infinite-dimensional spatio-temporal persistence of excitation condition
    corecore