609 research outputs found

    Search Rank Fraud De-Anonymization in Online Systems

    Full text link
    We introduce the fraud de-anonymization problem, that goes beyond fraud detection, to unmask the human masterminds responsible for posting search rank fraud in online systems. We collect and study search rank fraud data from Upwork, and survey the capabilities and behaviors of 58 search rank fraudsters recruited from 6 crowdsourcing sites. We propose Dolos, a fraud de-anonymization system that leverages traits and behaviors extracted from these studies, to attribute detected fraud to crowdsourcing site fraudsters, thus to real identities and bank accounts. We introduce MCDense, a min-cut dense component detection algorithm to uncover groups of user accounts controlled by different fraudsters, and leverage stylometry and deep learning to attribute them to crowdsourcing site profiles. Dolos correctly identified the owners of 95% of fraudster-controlled communities, and uncovered fraudsters who promoted as many as 97.5% of fraud apps we collected from Google Play. When evaluated on 13,087 apps (820,760 reviews), which we monitored over more than 6 months, Dolos identified 1,056 apps with suspicious reviewer groups. We report orthogonal evidence of their fraud, including fraud duplicates and fraud re-posts.Comment: The 29Th ACM Conference on Hypertext and Social Media, July 201

    Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations

    Get PDF
    To help their users to discover important items at a particular time, major websites like Twitter, Yelp, TripAdvisor or NYTimes provide Top-K recommendations (e.g., 10 Trending Topics, Top 5 Hotels in Paris or 10 Most Viewed News Stories), which rely on crowdsourced popularity signals to select the items. However, different sections of a crowd may have different preferences, and there is a large silent majority who do not explicitly express their opinion. Also, the crowd often consists of actors like bots, spammers, or people running orchestrated campaigns. Recommendation algorithms today largely do not consider such nuances, hence are vulnerable to strategic manipulation by small but hyper-active user groups. To fairly aggregate the preferences of all users while recommending top-K items, we borrow ideas from prior research on social choice theory, and identify a voting mechanism called Single Transferable Vote (STV) as having many of the fairness properties we desire in top-K item (s)elections. We develop an innovative mechanism to attribute preferences of silent majority which also make STV completely operational. We show the generalizability of our approach by implementing it on two different real-world datasets. Through extensive experimentation and comparison with state-of-the-art techniques, we show that our proposed approach provides maximum user satisfaction, and cuts down drastically on items disliked by most but hyper-actively promoted by a few users.Comment: In the proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* '19). Please cite the conference versio
    corecore