2,395 research outputs found

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Revealing intra-urban spatial structure through an exploratory analysis by combining road network abstraction model and taxi trajectory data

    Full text link
    The unprecedented urbanization in China has dramatically changed the urban spatial structure of cities. With the proliferation of individual-level geospatial big data, previous studies have widely used the network abstraction model to reveal the underlying urban spatial structure. However, the construction of network abstraction models primarily focuses on the topology of the road network without considering individual travel flows along with the road networks. Individual travel flows reflect the urban dynamics, which can further help understand the underlying spatial structure. This study therefore aims to reveal the intra-urban spatial structure by integrating the road network abstraction model and individual travel flows. To achieve this goal, we 1) quantify the spatial interaction relatedness of road segments based on the Word2Vec model using large volumes of taxi trip data, then 2) characterize the road abstraction network model according to the identified spatial interaction relatedness, and 3) implement a community detection algorithm to reveal sub-regions of a city. Our results reveal three levels of hierarchical spatial structures in the Wuhan metropolitan area. This study provides a data-driven approach to the investigation of urban spatial structure via identifying traffic interaction patterns on the road network, offering insights to urban planning practice and transportation management

    Discovering Urban Functional Zones By Latent Fusion of Users GPS Data and Points of Interests

    Full text link
    With rapid development of socio-economics, the task of discovering functional zones becomes critical to better understand the interactions between social activities and spatial locations. In this paper, we propose a framework to discover the functional zones by analyzing urban structures and social behaviors. The proposed approach models the inner influences between spatial locations and human activities by fusing the semantic meanings of both Point of Interests (POIs) and human activities to learn the latent representation of the regions. A spatial based unsupervised clustering method, Conditional Random Filed (CRF), is then applied to aggregate regions using both their spatial information and discriminative representations. Also, we estimate the functionality of the regions and annotate them by the differences between the normalized POI distributions which properly rank various functionalities. This framework is able to properly address the biased categories in sparse POI data, when exploring the unbiased and true functional zones. To validate our framework, a case study is evaluated by using very large real-world users GPS and POIs data from city of Raleigh. The results demonstrate that the proposed framework can better identify functional zones than the benchmarks, and, therefore, enhance understanding of urban structures with a finer granularity under practical conditions

    A Probabilistic Embedding Clustering Method for Urban Structure Detection

    Full text link
    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by learning via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.Comment: 6 pages, 7 figures, ICSDM201
    corecore