3 research outputs found

    Efficient Algorithms for the Closest Pair Problem and Applications

    Full text link
    The closest pair problem (CPP) is one of the well studied and fundamental problems in computing. Given a set of points in a metric space, the problem is to identify the pair of closest points. Another closely related problem is the fixed radius nearest neighbors problem (FRNNP). Given a set of points and a radius RR, the problem is, for every input point pp, to identify all the other input points that are within a distance of RR from pp. A naive deterministic algorithm can solve these problems in quadratic time. CPP as well as FRNNP play a vital role in computational biology, computational finance, share market analysis, weather prediction, entomology, electro cardiograph, N-body simulations, molecular simulations, etc. As a result, any improvements made in solving CPP and FRNNP will have immediate implications for the solution of numerous problems in these domains. We live in an era of big data and processing these data take large amounts of time. Speeding up data processing algorithms is thus much more essential now than ever before. In this paper we present algorithms for CPP and FRNNP that improve (in theory and/or practice) the best-known algorithms reported in the literature for CPP and FRNNP. These algorithms also improve the best-known algorithms for related applications including time series motif mining and the two locus problem in Genome Wide Association Studies (GWAS)

    Generating reference models for structurally complex data: application to the stabilometry medical domain

    Get PDF
    We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of singlevalued or multivalued attributes, including time series, for example. These attributes are structured according to domain-dependent hierarchies. Our aim is to generate reference models of population groups. These models represent the population archetype and are very useful for supporting such important tasks as diagnosis, detecting fraud, analyzing patient evolution, identifying control groups, etc
    corecore