7 research outputs found

    Efficient Time and Space Representation of Uncertain Event Data

    Full text link
    Process mining is a discipline which concerns the analysis of execution data of operational processes, the extraction of models from event data, the measurement of the conformance between event data and normative models, and the enhancement of all aspects of processes. Most approaches assume that event data is accurately capture behavior. However, this is not realistic in many applications: data can contain uncertainty, generated from errors in recording, imprecise measurements, and other factors. Recently, new methods have been developed to analyze event data containing uncertainty; these techniques prominently rely on representing uncertain event data by means of graph-based models explicitly capturing uncertainty. In this paper, we introduce a new approach to efficiently calculate a graph representation of the behavior contained in an uncertain process trace. We present our novel algorithm, prove its asymptotic time complexity, and show experimental results that highlight order-of-magnitude performance improvements for the behavior graph construction.Comment: 34 pages, 16 figures, 5 table

    Evaluation of patient transport service in hospitals using process mining methods: Patients\u27 perspective

    Get PDF
    Designing healthcare facilities and their processes is a complex task which influences the quality and efficiency of healthcare services. The ongoing demand for healthcare services and cost burdens necessitate the application of analytical methods to enhance the overall service efficiency in hospitals. However, the variability in healthcare processes makes it highly complicated to accomplish this aim. This study addresses the complexity in the patient transport service process at a German hospital, and proposes a method based on process mining to obtain a holistic approach to recognise bottlenecks and main reasons for delays and resulting high costs associated with idle resources. To this aim, the event log data from the patient transport software system is collected and processed to discover the sequences and the timeline of the activities for the different cases of the transport process. The comparison between the actual and planned processes from the data set of the year 2020 shows that, for example, around 36% of the cases were 10 or more minutes delayed. To find delay issues in the process flow and their root causes the data traces of certain routes are intensively assessed. Additionally, the compliance with the predefined Key Performance Indicators concerning travel time and delay thresholds for individual cases was investigated. The efficiency of assignment of the transport requests to the transportation staff are also evaluated which gives useful understanding regarding staffing potential improvements. The research shows that process mining is an efficient method to provide comprehensive knowledge through process models that serve as Interactive Process Indicators and to extract significant transport pathways. It also suggests a more efficient patient transport concept and provides the decision makers with useful managerial insights to come up with efficient patient-centred analysis of transportation services through data from supporting information systems
    corecore