97,055 research outputs found

    Discovering Functional Communities in Dynamical Networks

    Full text link
    Many networks are important because they are substrates for dynamical systems, and their pattern of functional connectivity can itself be dynamic -- they can functionally reorganize, even if their underlying anatomical structure remains fixed. However, the recent rapid progress in discovering the community structure of networks has overwhelmingly focused on that constant anatomical connectivity. In this paper, we lay out the problem of discovering_functional communities_, and describe an approach to doing so. This method combines recent work on measuring information sharing across stochastic networks with an existing and successful community-discovery algorithm for weighted networks. We illustrate it with an application to a large biophysical model of the transition from beta to gamma rhythms in the hippocampus.Comment: 18 pages, 4 figures, Springer "Lecture Notes in Computer Science" style. Forthcoming in the proceedings of the workshop "Statistical Network Analysis: Models, Issues and New Directions", at ICML 2006. Version 2: small clarifications, typo corrections, added referenc

    Datamining for Web-Enabled Electronic Business Applications

    Get PDF
    Web-Enabled Electronic Business is generating massive amount of data on customer purchases, browsing patterns, usage times and preferences at an increasing rate. Data mining techniques can be applied to all the data being collected for obtaining useful information. This chapter attempts to present issues associated with data mining for web-enabled electronic-business

    A qualitative approach to the identification, visualisation and interpretation of repetitive motion patterns in groups of moving point objects

    Get PDF
    Discovering repetitive patterns is important in a wide range of research areas, such as bioinformatics and human movement analysis. This study puts forward a new methodology to identify, visualise and interpret repetitive motion patterns in groups of Moving Point Objects (MPOs). The methodology consists of three steps. First, motion patterns are qualitatively described using the Qualitative Trajectory Calculus (QTC). Second, a similarity analysis is conducted to compare motion patterns and identify repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a continuous triangular model. As an illustration of the usefulness of combining these hitherto separated methods, a specific movement case is examined: Samba dance, a rhythmical dance will? many repetitive movements. The results show that the presented methodology is able to successfully identify, visualize and interpret the contained repetitive motions

    Finding Temporal Patterns in Noisy Longitudinal Data: A Study in Diabetic Retinopathy

    Get PDF
    This paper describes an approach to temporal pattern mining using the concept of user defined temporal prototypes to define the nature of the trends of interests. The temporal patterns are defined in terms of sequences of support values associated with identified frequent patterns. The prototypes are defined mathematically so that they can be mapped onto the temporal patterns. The focus for the advocated temporal pattern mining process is a large longitudinal patient database collected as part of a diabetic retinopathy screening programme, The data set is, in itself, also of interest as it is very noisy (in common with other similar medical datasets) and does not feature a clear association between specific time stamps and subsets of the data. The diabetic retinopathy application, the data warehousing and cleaning process, and the frequent pattern mining procedure (together with the application of the prototype concept) are all described in the paper. An evaluation of the frequent pattern mining process is also presented
    • …
    corecore