3,250 research outputs found

    Web-Based Measure of Semantic Relatedness

    Get PDF
    Semantic relatedness measures quantify the degree in which some words or concepts are related, considering not only similarity but any possible semantic relationship among them. Relatedness computation is of great interest in different areas, such as Natural Language Processing, Information Retrieval, or the Semantic Web. Different methods have been proposed in the past; however, current relatedness measures lack some desirable properties for a new generation of Semantic Web applications: maximum coverage, domain independence, and universality. In this paper, we explore the use of a semantic relatedness measure between words, that uses the Web as knowledge source. This measure exploits the information about frequencies of use provided by existing search engines. Furthermore, taking this measure as basis, we define a new semantic relatedness measure among ontology terms. The proposed measure fulfils the above mentioned desirable properties to be used on the Semantic Web. We have tested extensively this semantic measure to show that it correlates well with human judgment, and helps solving some particular tasks, as word sense disambiguation or ontology matching

    A Knowledge-Based Topic Modeling Approach for Automatic Topic Labeling

    Get PDF
    Probabilistic topic models, which aim to discover latent topics in text corpora define each document as a multinomial distributions over topics and each topic as a multinomial distributions over words. Although, humans can infer a proper label for each topic by looking at top representative words of the topic but, it is not applicable for machines. Automatic Topic Labeling techniques try to address the problem. The ultimate goal of topic labeling techniques are to assign interpretable labels for the learned topics. In this paper, we are taking concepts of ontology into consideration instead of words alone to improve the quality of generated labels for each topic. Our work is different in comparison with the previous efforts in this area, where topics are usually represented with a batch of selected words from topics. We have highlighted some aspects of our approach including: 1) we have incorporated ontology concepts with statistical topic modeling in a unified framework, where each topic is a multinomial probability distribution over the concepts and each concept is represented as a distribution over words; and 2) a topic labeling model according to the meaning of the concepts of the ontology included in the learned topics. The best topic labels are selected with respect to the semantic similarity of the concepts and their ontological categorizations. We demonstrate the effectiveness of considering ontological concepts as richer aspects between topics and words by comprehensive experiments on two different data sets. In another word, representing topics via ontological concepts shows an effective way for generating descriptive and representative labels for the discovered topics

    Escaping the Trap of too Precise Topic Queries

    Full text link
    At the very center of digital mathematics libraries lie controlled vocabularies which qualify the {\it topic} of the documents. These topics are used when submitting a document to a digital mathematics library and to perform searches in a library. The latter are refined by the use of these topics as they allow a precise classification of the mathematics area this document addresses. However, there is a major risk that users employ too precise topics to specify their queries: they may be employing a topic that is only "close-by" but missing to match the right resource. We call this the {\it topic trap}. Indeed, since 2009, this issue has appeared frequently on the i2geo.net platform. Other mathematics portals experience the same phenomenon. An approach to solve this issue is to introduce tolerance in the way queries are understood by the user. In particular, the approach of including fuzzy matches but this introduces noise which may prevent the user of understanding the function of the search engine. In this paper, we propose a way to escape the topic trap by employing the navigation between related topics and the count of search results for each topic. This supports the user in that search for close-by topics is a click away from a previous search. This approach was realized with the i2geo search engine and is described in detail where the relation of being {\it related} is computed by employing textual analysis of the definitions of the concepts fetched from the Wikipedia encyclopedia.Comment: 12 pages, Conference on Intelligent Computer Mathematics 2013 Bath, U

    Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

    Get PDF
    Event detection in unconstrained videos is conceived as a content-based video retrieval with two modalities: textual and visual. Given a text describing a novel event, the goal is to rank related videos accordingly. This task is zero-exemplar, no video examples are given to the novel event. Related works train a bank of concept detectors on external data sources. These detectors predict confidence scores for test videos, which are ranked and retrieved accordingly. In contrast, we learn a joint space in which the visual and textual representations are embedded. The space casts a novel event as a probability of pre-defined events. Also, it learns to measure the distance between an event and its related videos. Our model is trained end-to-end on publicly available EventNet. When applied to TRECVID Multimedia Event Detection dataset, it outperforms the state-of-the-art by a considerable margin.Comment: IEEE CVPR 201

    Using association rule mining to enrich semantic concepts for video retrieval

    Get PDF
    In order to achieve true content-based information retrieval on video we should analyse and index video with high-level semantic concepts in addition to using user-generated tags and structured metadata like title, date, etc. However the range of such high-level semantic concepts, detected either manually or automatically, usually limited compared to the richness of information content in video and the potential vocabulary of available concepts for indexing. Even though there is work to improve the performance of individual concept classifiers, we should strive to make the best use of whatever partial sets of semantic concept occurrences are available to us. We describe in this paper our method for using association rule mining to automatically enrich the representation of video content through a set of semantic concepts based on concept co-occurrence patterns. We describe our experiments on the TRECVid 2005 video corpus annotated with the 449 concepts of the LSCOM ontology. The evaluation of our results shows the usefulness of our approach

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Content Recommendation Through Linked Data

    Get PDF
    Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia
    corecore