14 research outputs found

    Neural Skill Transfer from Supervised Language Tasks to Reading Comprehension

    Full text link
    Reading comprehension is a challenging task in natural language processing and requires a set of skills to be solved. While current approaches focus on solving the task as a whole, in this paper, we propose to use a neural network `skill' transfer approach. We transfer knowledge from several lower-level language tasks (skills) including textual entailment, named entity recognition, paraphrase detection and question type classification into the reading comprehension model. We conduct an empirical evaluation and show that transferring language skill knowledge leads to significant improvements for the task with much fewer steps compared to the baseline model. We also show that the skill transfer approach is effective even with small amounts of training data. Another finding of this work is that using token-wise deep label supervision for text classification improves the performance of transfer learning

    A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks

    Full text link
    Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information.Comment: 8 pages, 1 figure, To appear in Proceedings of AAAI 201

    When Do Discourse Markers Affect Computational Sentence Understanding?

    Full text link
    The capabilities and use cases of automatic natural language processing (NLP) have grown significantly over the last few years. While much work has been devoted to understanding how humans deal with discourse connectives, this phenomenon is understudied in computational systems. Therefore, it is important to put NLP models under the microscope and examine whether they can adequately comprehend, process, and reason within the complexity of natural language. In this chapter, we introduce the main mechanisms behind automatic sentence processing systems step by step and then focus on evaluating discourse connective processing. We assess nine popular systems in their ability to understand English discourse connectives and analyze how context and language understanding tasks affect their connective comprehension. The results show that NLP systems do not process all discourse connectives equally well and that the computational processing complexity of different connective kinds is not always consistently in line with the presumed complexity order found in human processing. In addition, while humans are more inclined to be influenced during the reading procedure but not necessarily in the final comprehension performance, discourse connectives have a significant impact on the final accuracy of NLP systems. The richer knowledge of connectives a system learns, the more negative effect inappropriate connectives have on it. This suggests that the correct explicitation of discourse connectives is important for computational natural language processing.Comment: Chapter 7 of Discourse Markers in Interaction, published in Trends in Linguistics. Studies and Monograph

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa
    corecore