1,000 research outputs found

    Simulation of rock salt dissolution and its impact on land subsidence

    Get PDF
    Extensive land subsidence can occur due to subsurface dissolution of evaporites such as halite and gypsum. This paper explores techniques to simulate the salt dissolution forming an intrastratal karst, which is embedded in a sequence of carbonates, marls, anhydrite and gypsum. A numerical model is developed to simulate laminar flow in a subhorizontal void, which corresponds to an opening intrastratal karst. The numerical model is based on the laminar steady-state Stokes flow equation, and the advection dispersion transport equation coupled with the dissolution equation. The flow equation is solved using the nonconforming Crouzeix-Raviart (CR) finite element approximation for the Stokes equation. For the transport equation, a combination between discontinuous Galerkin method and multipoint flux approximation method is proposed. The numerical effect of the dissolution is considered by using a dynamic mesh variation that increases the size of the mesh based on the amount of dissolved salt. The numerical method is applied to a 2D geological cross section representing a Horst and Graben structure in the Tabular Jura of northwestern Switzerland. The model simulates salt dissolution within the geological section and predicts the amount of vertical dissolution as an indicator of potential subsidence that could occur. Simulation results showed that the highest dissolution amount is observed near the normal fault zones, and, therefore, the highest subsidence rates are expected above normal fault zones

    Decoupling the Stationary Navier-Stokes-Darcy System with the Beavers-Joseph-Saffman Interface Condition

    Get PDF
    This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the features of the proposed method

    A Domain Decomposition Method for the Steady-State Navier-Stokes-Darcy Model with Beavers-Joseph Interface Condition

    Get PDF
    This paper proposes and analyzes a Robin-type multiphysics domain decomposition method (DDM) for the steady-state Navier-Stokes-Darcy model with three interface conditions. In addition to the two regular interface conditions for the mass conservation and the force balance, the Beavers-Joseph condition is used as the interface condition in the tangential direction. The major mathematical difficulty in adopting the Beavers-Joseph condition is that it creates an indefinite leading order contribution to the total energy budget of the system [Y. Cao et al., Comm. Math. Sci., 8 (2010), pp. 1-25; Y. Cao et al., SIAM J. Numer. Anal., 47 (2010), pp. 4239-4256]. In this paper, the well-posedness of the Navier-Stokes-Darcy model with Beavers-Joseph condition is analyzed by using a branch of nonsingular solutions. By following the idea in [Y. Cao et al., Numer. Math., 117 (2011), pp. 601-629], the three physical interface conditions are utilized together to construct the Robin-type boundary conditions on the interface and decouple the two physics which are described by Navier-Stokes and Darcy equations, respectively. Then the corresponding multiphysics DDM is proposed and analyzed. Three numerical experiments using finite elements are presented to illustrate the features of the proposed method and verify the results of the theoretical analysis

    A multigrid multilevel Monte Carlo method for transport in the Darcy–Stokes system

    Get PDF
    A multilevel Monte Carlo (MLMC) method for Uncertainty Quantification (UQ) of advection-dominated contaminant transport in a coupled Darcy–Stokes flow system is described. In particular, we focus on high-dimensional epistemic uncertainty due to an unknown permeability field in the Darcy domain that is modelled as a lognormal random field. This paper explores different numerical strategies for the subproblems and suggests an optimal combination for the MLMC estimator. We propose a specific monolithic multigrid algorithm to efficiently solve the steady-state Darcy–Stokes flow with a highly heterogeneous diffusion coefficient. Furthermore, we describe an Alternating Direction Implicit (ADI) based time-stepping for the flux-limited quadratic upwinding discretization for the transport problem. Numerical experiments illustrating the multigrid convergence and cost of the MLMC estimator with respect to the smoothness of permeability field are presented
    corecore