2,831 research outputs found

    Disconnecting strongly regular graphs

    Full text link
    In this paper, we show that the minimum number of vertices whose removal disconnects a connected strongly regular graph into non-singleton components, equals the size of the neighborhood of an edge for many graphs. These include blocks graphs of Steiner 22-designs, many Latin square graphs and strongly regular graphs whose intersection parameters are at most a quarter of their valency

    On a conjecture of Brouwer involving the connectivity of strongly regular graphs

    Full text link
    In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components. We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ\Delta-spaces are counterexamples to Brouwer's Conjecture. Using J.I. Hall's characterization of finite reduced copolar spaces, we find that the triangular graphs T(m)T(m), the symplectic graphs Sp(2r,q)Sp(2r,q) over the field Fq\mathbb{F}_q (for any qq prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2)O^{+}(2r,2) and from the elliptic quadrics O(2r,2)O^{-}(2r,2) over the field F2\mathbb{F}_2, respectively, are counterexamples to Brouwer's Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall's characterization theorem for Δ\Delta-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ\Delta-spaces and thus, yield other counterexamples to Brouwer's Conjecture. We prove that Brouwer's Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q)GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue -2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases. We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.Comment: 25 pages, 1 table; accepted to JCTA; revised version contains a new section on copolar and Delta space

    The spectrum and toughness of regular graphs

    Full text link
    In 1995, Brouwer proved that the toughness of a connected kk-regular graph GG is at least k/λ2k/\lambda-2, where λ\lambda is the maximum absolute value of the non-trivial eigenvalues of GG. Brouwer conjectured that one can improve this lower bound to k/λ1k/\lambda-1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λk/\lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(λmin)k/(-\lambda_{min}), where λmin\lambda_{min} is the smallest eigenvalue of the adjacency matrix of the graph.Comment: 15 pages, 1 figure, accepted to Discrete Applied Mathematics, special issue dedicated to the "Applications of Graph Spectra in Computer Science" Conference, Centre de Recerca Matematica (CRM), Bellaterra, Barcelona, June 16-20, 201

    Dynamical consequences of a free interval: minimality, transitivity, mixing and topological entropy

    Full text link
    We study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e., an open subset homeomorphic to an open interval). A special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.Comment: 21 page

    Eigenvalues and Perfect Matchings

    Get PDF
    AMS classification: 05C50, 05C70, 05E30.graph;perfect matching;Laplacian matrix;eigenvalues.

    Integer symmetric matrices having all their eigenvalues in the interval [-2,2]

    Get PDF
    We completely describe all integer symmetric matrices that have all their eigenvalues in the interval [-2,2]. Along the way we classify all signed graphs, and then all charged signed graphs, having all their eigenvalues in this same interval. We then classify subsets of the above for which the integer symmetric matrices, signed graphs and charged signed graphs have all their eigenvalues in the open interval (-2,2).Comment: 33 pages, 18 figure
    corecore