28,590 research outputs found
Disassembly line scheduling with genetic algorithms.
International audienceDisassembly is part of the demanufacturing and it is meant to obtain components and materials from end-of-line products. An essential performance objective of a disassembly process is the benefits it brings, that is the revenue brought by the retrieved parts and material, diminished by the cost of their retrieval operations. A decision must be taken to balance an automatic disassembly line. A well balanced line will decrease the cost of disassembly operations. An evolutionary (genetic) algorithm is used to deal with the multi-criteria optimization problem of the disassembly scheduling
Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning
The scientific and industrial communities have begun investigating the possibility of making product recovery economically viable. Disassembly sequence planning may be used to make end-of-life product take-back processes more cost effective. Much of the research involving disassembly sequence planning relies on mathematical optimization models. These models often require input data that is unavailable or can only be approximated with high uncertainty. In addition, there are few mathematical models that include consideration of the potential of product damage during disassembly operations. The emergence of Immersive Computing Technologies (ICT) enables designers to evaluate products without the need for physical prototypes. Utilizing unique 3D user interfaces, designers can investigate a multitude of potential disassembly operations without resorting to disassembly of actual products. The information obtained through immersive simulation can be used to determine the optimum disassembly sequence. The aim of this work is to apply a decision analytical approach in combination with immersive computing technology to optimize the disassembly sequence while considering trade-offs between two conflicting attributes: disassembly cost and damage estimation during disassembly operations. A wooden Burr puzzle is used as an example product test case. Immersive human computer interaction is used to determine input values for key variables in the mathematical model. The results demonstrate that the use of dynamic programming algorithms coupled with virtual disassembly simulation is an effective method for evaluating multiple attributes in disassembly sequence planning. This paper presents a decision analytical approach, combined with immersive computing techniques, to optimize the disassembly sequence. Future work will concentrate on creating better methods of estimating damage in virtual disassembly environments and using the immersive technology to further explore the feasible design space
Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms
The authors propose the implementation of hybrid Fuzzy Logic-Genetic
Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly
sequence of products. The GA-Fuzzy Logic approach is implemented onto two
levels. The first level of hybridization consists of the development of a Fuzzy
controller for the parameters of an assembly or disassembly planner based on
GAs. This controller acts on mutation probability and crossover rate in order
to adapt their values dynamically while the algorithm runs. The second level
consists of the identification of theoptimal assembly or disassembly sequence
by a Fuzzy function, in order to obtain a closer control of the technological
knowledge of the assembly/disassembly process. Two case studies were analyzed
in order to test the efficiency of the Fuzzy-GA methodologies
A CSP model for simple non-reversible and parallel repair plans
Thiswork presents a constraint satisfaction problem
(CSP) model for the planning and scheduling of disassembly
and assembly tasks when repairing or substituting
faulty parts. The problem involves not only the ordering of
assembly and disassembly tasks, but also the selection of
them from a set of alternatives. The goal of the plan is the minimization
of the total repairing time, and the model considers,
apart from the durations and resources used for the assembly
and disassembly tasks, the necessary delays due to the change
of configuration in the machines, and to the transportation
of intermediate subassemblies between different machines.
The problem considers that sub-assemblies that do not contain
the faulty part are nor further disassembled, but allows
non-reversible and parallel repair plans. The set of all feasible
repair plans are represented by an extended And/Or graph.
This extended representation embodies all of the constraints
of the problem, such as temporal and resource constraints and
those related to the selection of tasks for obtaining a correct
plan.Ministerio de Educación y Ciencia DIP2006-15476-C02-0
The KIT swiss knife gripper for disassembly tasks: a multi-functional gripper for bimanual manipulation with a single arm
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work presents the concept of a robotic gripper designed for the disassembly of electromechanical devices that comprises several innovative ideas. Novel concepts include the ability to interchange built-in tools without the need to grasp them, the ability to reposition grasped objects in-hand, the capability of performing classic dual arm manipulation within the gripper and the utilization of classic industrial robotic arms kinematics within a robotic gripper. We analyze state of the art grippers and robotic hands designed for dexterous in-hand manipulation and extract common characteristics and weak points. The presented concept is obtained from the task requirements for disassembly of electromechanical devices and it is then evaluated for general purpose grasping, in-hand manipulation and operations with tools. We further present the CAD design for a first prototype.Peer ReviewedPostprint (author's final draft
Integration of end-of-life options as a design criterion in methods and tools for ecodesign
Ecodesigning a product consists (amongst other things) in assessing what its environmental impacts will be throughout its life (that is to say from its design phase to its end of life), in order to limit them. Some tools and methods exist to (eco)design a product, just like methods that assess its environmental impacts (more often, a posteriori). But it is now well accepted that these are the early design decisions that will initiate the greatest consequences on the product’s end-of-life options and their impacts. Thus, the present work aims at analysing traditional design tools, so as to integrate end-of-life possibilities in the form of recommendations for the design step. This proposal will be illustrated by means of a wind turbine design.EcoSD networ
Addressing decision making for remanufacturing operations and design-for-remanufacture
Remanufacturing is a process of returning a used product to at least original equipment manufacturer original performance specification from the customers' perspective and giving the resultant product a warranty that is at least equal to that of a newly manufactured equivalent. This paper explains the need to combine ecological concerns and economic growth and the significance of remanufacturing in this. Using the experience of an international aero-engine manufacturer it discusses the impact of the need for sustainable manufacturing on organisational business models. It explains some key decision-making issues that hinder remanufacturing and suggests effective solutions. It presents a peer-validated, high-level design guideline to assist decision-making in design in order to support remanufacturing. The design guide was developed in the UK through the analysis of selections of products during case studies and workshops involving remanufacturing and conventional manufacturing practitioners as well as academics. It is one of the initial stages in the development of a robust design for remanufacture guideline
Strategic operations framework for disassembly in remanufacturing
Studies on disassembly for remanufacturing using strategic perspectives have been overlooked in current studies. This research uses a strategic approach to examine how product, process and organisational designs affect disassembly strategies for different remanufacturer types. Three companies consisting of two automotive and one jet engine remanufacturer were selected as subjects. A case study approach using qualitative data was adopted to examine how remanufacturers design their disassembly strategies. The analysis revealed that the two major factors influencing disassembly strategies are product complexity and the stability of core supply. It also determined and grouped the factors that affect disassembly within remanufacturing
Production planning and control of closed-loop supply chains
More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control
- …
