1,152 research outputs found

    Decision makings in key remanufacturing activities to optimise remanufacturing outcomes : a review

    Get PDF
    The importance of remanufacturing has been increasing since stricter regulations on protecting the environment were enforced. Remanufacturing is considered as the main means of retaining value from used products and components in order to drive a circular economy. However, it is more complex than traditional manufacturing due to the uncertainties associated with the quality, quantities and return timing of used products and components. Over the past few years, various methods of optimising remanufacturing outcomes have been developed to make decisions such as identifying the best End-Of-Life (EOL) options, acquiring the right amounts of cores, deciding the most suitable disassembly level, applying suitable cleaning techniques, and considering product commonality across different product families. A decision being made at one remanufacturing activity will greatly affect the decisions at subsequent activities, which will affect remanufacturing outcomes, i.e. productivity, economic performance effectiveness, and the proportion of core that can be salvaged. Therefore, a holistic way of integrating different decisions over multiple remanufacturing activities is needed to improve remanufacturing outcomes, which is a major knowledge gap. This paper reviews current remanufacturing practice in order to highlight both the challenges and opportunities, and more importantly, offers useful insights on how such a knowledge gap can be bridged

    Design of Closed Loop Supply Chains

    Get PDF
    Increased concern for the environment has lead to new techniques to design products and supply chains that are both economically and ecologically feasible. This paper deals with the product - and corresponding supply chain design for a refrigerator. Literature study shows that there are many models to support product design and logistics separately, but not in an integrated way. In our research we develop quantitative modelling to support an optimal design structure of a product, i.e. modularity, repairability, recyclability, as well as the optimal locations and goods flows allocation in the logistics system. Environmental impacts are measured by energy and waste. Economic costs are modelled as linear functions of volumes with a fixed set-up component for facilities. We apply this model using real life R&D data of a Japanese consumer electronics company. The model is run for different scenarios using different parameter settings such as centralised versus decentralised logistics, alternative product designs, varying return quality and quantity, and potential environmental legislation based on producer responsibility.supply chain management;reverse logistics;facility location;network design;product design

    Decision support for assessing the feasibility of a product for remanufacture

    Get PDF
    Remanufacturing is the process of restoring old, damaged and failed products to a condition as good as new . Whilst the practice of remanufacture has been conducted for almost a century, the attention it receives within mainstream business is increasing due to potential benefits associated with economic savings and reduced environmental impact. There are several challenges in operating a successful remanufacturing business, one of which is how to assess the feasibility of remanufacturing. Remanufacturing does not lend itself towards every product due to factors related to the product, process, market and business capabilities, therefore careful assessment should be conducted before taking on a remanufacturing endeavour. This thesis reports the research undertaken to aid decision makers assessing the feasibility of a product for remanufacture. The aim has therefore been to determine the requirements of assessing remanufacturing feasibility, then to develop a tool to support this activity. Requirements of the decision making process were established through a detailed review of the literature supplemented with additional interviews from remanufacturing businesses, whilst research gaps for support tools were identified through a systematic review of existing tools presented within academia. Through these reviews it was determined that current methods do not provide enough support in determining the impact of uncertainties found within remanufacturing against key assessment criteria, such as economic cost. Focus upon the tool development was therefore directed at estimating remanufacturing cost of a product under uncertain conditions. The tool was designed, utilising techniques such as Monte Carlo analysis, fuzzy sets and case based reasoning. A prototype of the tool was then implemented within an object oriented structure and deployed as web service. Testing and validation were conducted by demonstrating the functionality of the tool against a set of specification requirements, through two contrasting remanufacturing case studies identified within industry. In summary this research has developed a tool to support the assessment of remanufacturing viability through cost estimation under uncertain conditions, identifying requirements through a detailed literature review and interviews with industry and providing validation through two detailed case studies. The tool is novel in its ability to calculate both cost and the risk associated with the uncertainties present within the remanufacturing domain

    A review of the state of the art in tools and techniques used to evaluate remanufacturing feasibility

    Get PDF
    Remanufacturing often seems a sensible approach for companies looking to adopt sustainable business plans to achieve long term success. However, remanufacturing must not be treated as a panacea for achieving a sustainable business, as issues such as market demand, product design, end of life condition and information uncertainty can affect the success of a remanufacturing endeavour. Businesses therefore need to carefully assess the feasibility of adopting remanufacturing before committing to a particular activity or strategy. To aid this decision process, a number of tools and techniques have been published by academics. However, there is currently not a formal review and comparison of these tools and how they relate to the decision process. The main research objective of this study has therefore been to identify tools and methods which have been developed within academia to support the decision process of assessing and evaluating the viability of conducting remanufacturing, and evaluate how they have met the requirements of the decision stage. This has been achieved by conducting a content analysis. Three bibliographic databases were searched (Compendex, Web of Science and Scopus) using a structured keyword search to identify relevant literature. The identified tools were then split into 6 categories based upon the specific decision stages and applications, then evaluated against a set of key criteria which are, the decision factors (economic, environmental, social) and the inclusion of uncertainty. The key finding of this study has been that although decision factors are generally well covered, operational tools and the use of uncertainty are often neglected

    Robotic disassembly sequence planning with backup actions

    Get PDF

    A Fuzzy Inference System Approach for Evaluating the Feasibility of Product Remanufacture

    Get PDF
    In the recent past, efforts have been made in enhancing sustainable manufacturing aimed at protecting the environment and saving natural resources. Among the efforts that have been explored include strategies to ensure responsible end-of-life product management so as reduce the impact on the environment and achieve effective use of resources. Towards this end, reduce, reuse and recycle product disposal strategies have found a lot of consideration in manufacturing. Of the product reuse strategies, remanufacturing has been widely applied owing to its unique feature of rendering the remanufactured product as good as new. For remanufacturers, this strategy leads to provision of quality products comparable to new their new counterparts at a reduced cost. Remanufacturing also leads to a sustainable environment through energy and material savings, as well as minimized solid wastes. Remanufacturing however, poses challenges related to collection of the returns or cores, manufacturing process planning, resource allocation, warranty estimation and redistribution. These challenges are due to product and process complexities, customer requirements, and uncertainties associated with product take back and the remanufactured products’ market-base. Key among these challenges is the remanufacturing process which is complicated, labor intensive with varying process times. In most cases the routing of these processes is stochastic in nature, based on the condition of the returned product. There is also the negative perception among consumers that remanufactured products are less superior to new ones, which calls for the need to allocate preferably longer warranty periods for the remanufactured product to induce confidence in the consumer while at the same time keeping the warranty costs low. The objectives of this study were informed by challenges faced by a local remanufacturing firm. They include: (1) a detailed study of the current remanufacturing process of the firm’s products; (2) identification of bottlenecks in the process to make recommendations for improvement; (3) develop a decision support system for assessing product remanufacture; (4) assess warranty allocation options for remanufactured product reuse. The study revealed that there are bottlenecks in the current remanufacturing process and suggested an improvement to enhance efficiency. This bottlenecks include overutilization of some of the process centers such as the diagnostic testing and the after-repair testing centers which lead to the product spending more time in the system than necessary. To improve the system performance the capacities of the bottleneck centers were increased which yielded significant reduction in the time the product spends in the system. The key contribution of this dissertation is the development of a decision support system based on a bi-level fuzzy linguistic computing approach. This model integrates qualitative and quantitative product attributes in determining the remanufacturability of a product. The fuzzy-based model established remanufacturability metric, herein referred to as an index, is applied to assess the feasibility of remanufacturing two products that were used as a case study. A number of warranty scenarios are considered to ascertain the impact of different warranty periods on the cost of warranty. The results show that the additional warranty cost for product reuse is a function of the period of first use and the residual life of the produc

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Augmented reality applied to design for disassembly assessment for a volumetric pump with rotating cylinder

    Get PDF
    Design for Disassembly (DfD) and Augmented Reality (AR) have become promising approaches to improve sustainability, by providing efficient delivery and learning assets. This study combines DfD and AR to deliver a method that helps to streamline maintenance processes and operator training. It focuses on a common part in the process industry that requires frequent maintenance and repair. DfD was applied to the pump’s design to ease disassembly and reduce material waste, energy consumption, and maintenance time. AR was used to provide an interactive guide to improve the operator understanding of its internal parts and assembly/disassembly procedures. The resulting DfD-AR led to a reduction in maintenance time and shows potential to deliver better training. This highlights the potential of DfD and AR to enhance sustainability, learning, and productivity. The resulting disassembly sequence was taken to an AR simulation, helping process designers to better understand the procedure and further optimize the solution with other constraints
    corecore