836 research outputs found

    Use of Weighted Finite State Transducers in Part of Speech Tagging

    Full text link
    This paper addresses issues in part of speech disambiguation using finite-state transducers and presents two main contributions to the field. One of them is the use of finite-state machines for part of speech tagging. Linguistic and statistical information is represented in terms of weights on transitions in weighted finite-state transducers. Another contribution is the successful combination of techniques -- linguistic and statistical -- for word disambiguation, compounded with the notion of word classes.Comment: uses psfig, ipamac

    Morphological Disambiguation by Voting Constraints

    Full text link
    We present a constraint-based morphological disambiguation system in which individual constraints vote on matching morphological parses, and disambiguation of all the tokens in a sentence is performed at the end by selecting parses that receive the highest votes. This constraint application paradigm makes the outcome of the disambiguation independent of the rule sequence, and hence relieves the rule developer from worrying about potentially conflicting rule sequencing. Our results for disambiguating Turkish indicate that using about 500 constraint rules and some additional simple statistics, we can attain a recall of 95-96% and a precision of 94-95% with about 1.01 parses per token. Our system is implemented in Prolog and we are currently investigating an efficient implementation based on finite state transducers.Comment: 8 pages, Latex source. To appear in Proceedings of ACL/EACL'97 Compressed postscript also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/acl97.ps.

    A finite-state model of German compounds

    Get PDF
    This paper summarizes the results of my Master's thesis and the main points of a talk I presented at the seminar of the Department of Applied Logic at the Adam Mickiewicz University in Poznań.It gives a short overview of the structure of German compounds and newer research concerning the role of the so-called interfixes. After an introduction to the concept of finite-state transducers the construction of a transducer used for naive compound segmentation is described. Tag-based finite-state methods for the further analysis of the found segments are given and discussed. Distributional transducer rules, for the construction of which I assume the existence of local and global morphological contexts, are proposed as means of disambiguation of the analyzed naive segmentation results.This paper summarizes the results of my Master's thesis and the main points of a talk I presented at the seminar of the Department of Applied Logic at the Adam Mickiewicz University in Poznań.It gives a short overview of the structure of German compounds and newer research concerning the role of the so-called interfixes. After an introduction to the concept of finite-state transducers the construction of a transducer used for naive compound segmentation is described. Tag-based finite-state methods for the further analysis of the found segments are given and discussed. Distributional transducer rules, for the construction of which I assume the existence of local and global morphological contexts, are proposed as means of disambiguation of the analyzed naive segmentation results.

    On the Disambiguation of Weighted Automata

    Full text link
    We present a disambiguation algorithm for weighted automata. The algorithm admits two main stages: a pre-disambiguation stage followed by a transition removal stage. We give a detailed description of the algorithm and the proof of its correctness. The algorithm is not applicable to all weighted automata but we prove sufficient conditions for its applicability in the case of the tropical semiring by introducing the *weak twins property*. In particular, the algorithm can be used with all acyclic weighted automata, relevant to applications. While disambiguation can sometimes be achieved using determinization, our disambiguation algorithm in some cases can return a result that is exponentially smaller than any equivalent deterministic automaton. We also present some empirical evidence of the space benefits of disambiguation over determinization in speech recognition and machine translation applications

    Error-tolerant Finite State Recognition with Applications to Morphological Analysis and Spelling Correction

    Get PDF
    Error-tolerant recognition enables the recognition of strings that deviate mildly from any string in the regular set recognized by the underlying finite state recognizer. Such recognition has applications in error-tolerant morphological processing, spelling correction, and approximate string matching in information retrieval. After a description of the concepts and algorithms involved, we give examples from two applications: In the context of morphological analysis, error-tolerant recognition allows misspelled input word forms to be corrected, and morphologically analyzed concurrently. We present an application of this to error-tolerant analysis of agglutinative morphology of Turkish words. The algorithm can be applied to morphological analysis of any language whose morphology is fully captured by a single (and possibly very large) finite state transducer, regardless of the word formation processes and morphographemic phenomena involved. In the context of spelling correction, error-tolerant recognition can be used to enumerate correct candidate forms from a given misspelled string within a certain edit distance. Again, it can be applied to any language with a word list comprising all inflected forms, or whose morphology is fully described by a finite state transducer. We present experimental results for spelling correction for a number of languages. These results indicate that such recognition works very efficiently for candidate generation in spelling correction for many European languages such as English, Dutch, French, German, Italian (and others) with very large word lists of root and inflected forms (some containing well over 200,000 forms), generating all candidate solutions within 10 to 45 milliseconds (with edit distance 1) on a SparcStation 10/41. For spelling correction in Turkish, error-tolerantComment: Replaces 9504031. gzipped, uuencoded postscript file. To appear in Computational Linguistics Volume 22 No:1, 1996, Also available as ftp://ftp.cs.bilkent.edu.tr/pub/ko/clpaper9512.ps.
    corecore