1,471 research outputs found

    Poisson Latent Feature Calculus for Generalized Indian Buffet Processes

    Full text link
    The purpose of this work is to describe a unified, and indeed simple, mechanism for non-parametric Bayesian analysis, construction and generative sampling of a large class of latent feature models which one can describe as generalized notions of Indian Buffet Processes(IBP). This is done via the Poisson Process Calculus as it now relates to latent feature models. The IBP was ingeniously devised by Griffiths and Ghahramani in (2005) and its generative scheme is cast in terms of customers entering sequentially an Indian Buffet restaurant and selecting previously sampled dishes as well as new dishes. In this metaphor dishes corresponds to latent features, attributes, preferences shared by individuals. The IBP, and its generalizations, represent an exciting class of models well suited to handle high dimensional statistical problems now common in this information age. The IBP is based on the usage of conditionally independent Bernoulli random variables, coupled with completely random measures acting as Bayesian priors, that are used to create sparse binary matrices. This Bayesian non-parametric view was a key insight due to Thibaux and Jordan (2007). One way to think of generalizations is to to use more general random variables. Of note in the current literature are models employing Poisson and Negative-Binomial random variables. However, unlike their closely related counterparts, generalized Chinese restaurant processes, the ability to analyze IBP models in a systematic and general manner is not yet available. The limitations are both in terms of knowledge about the effects of different priors and in terms of models based on a wider choice of random variables. This work will not only provide a thorough description of the properties of existing models but also provide a simple template to devise and analyze new models.Comment: This version provides more details for the multivariate extensions in section 5. We highlight the case of a simple multinomial distribution and showcase a multivariate Levy process prior we call a stable-Beta Dirichlet process. Section 4.1.1 expande

    A Simple Class of Bayesian Nonparametric Autoregression Models

    Get PDF
    We introduce a model for a time series of continuous outcomes, that can be expressed as fully nonparametric regression or density regression on lagged terms. The model is based on a dependent Dirichlet process prior on a family of random probability measures indexed by the lagged covariates. The approach is also extended to sequences of binary responses. We discuss implementation and applications of the models to a sequence of waiting times between eruptions of the Old Faithful Geyser, and to a dataset consisting of sequences of recurrence indicators for tumors in the bladder of several patients.MIUR 2008MK3AFZFONDECYT 1100010NIH/NCI R01CA075981Mathematic

    Robot Introspection with Bayesian Nonparametric Vector Autoregressive Hidden Markov Models

    Full text link
    Robot introspection, as opposed to anomaly detection typical in process monitoring, helps a robot understand what it is doing at all times. A robot should be able to identify its actions not only when failure or novelty occurs, but also as it executes any number of sub-tasks. As robots continue their quest of functioning in unstructured environments, it is imperative they understand what is it that they are actually doing to render them more robust. This work investigates the modeling ability of Bayesian nonparametric techniques on Markov Switching Process to learn complex dynamics typical in robot contact tasks. We study whether the Markov switching process, together with Bayesian priors can outperform the modeling ability of its counterparts: an HMM with Bayesian priors and without. The work was tested in a snap assembly task characterized by high elastic forces. The task consists of an insertion subtask with very complex dynamics. Our approach showed a stronger ability to generalize and was able to better model the subtask with complex dynamics in a computationally efficient way. The modeling technique is also used to learn a growing library of robot skills, one that when integrated with low-level control allows for robot online decision making.Comment: final version submitted to humanoids 201
    • …
    corecore