12,319 research outputs found
On the computation of directional scale-discretized wavelet transforms on the sphere
We review scale-discretized wavelets on the sphere, which are directional and
allow one to probe oriented structure in data defined on the sphere.
Furthermore, scale-discretized wavelets allow in practice the exact synthesis
of a signal from its wavelet coefficients. We present exact and efficient
algorithms to compute the scale-discretized wavelet transform of band-limited
signals on the sphere. These algorithms are implemented in the publicly
available S2DW code. We release a new version of S2DW that is parallelized and
contains additional code optimizations. Note that scale-discretized wavelets
can be viewed as a directional generalization of needlets. Finally, we outline
future improvements to the algorithms presented, which can be achieved by
exploiting a new sampling theorem on the sphere developed recently by some of
the authors.Comment: 13 pages, 3 figures, Proceedings of Wavelets and Sparsity XV, SPIE
Optics and Photonics 2013, Code is publicly available at http://www.s2dw.org
SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets
We present new clean maps of the CMB temperature anisotropies (as measured by
Planck) constructed with a novel internal linear combination (ILC) algorithm
using directional, scale-discretised wavelets --- Scale-discretised,
directional wavelet ILC or SILC. Directional wavelets, when convolved with
signals on the sphere, can separate the anisotropic filamentary structures
which are characteristic of both the CMB and foregrounds. Extending previous
component separation methods, which use the frequency, spatial and harmonic
signatures of foregrounds to separate them from the cosmological background
signal, SILC can additionally use morphological information in the foregrounds
and CMB to better localise the cleaning algorithm. We test the method on Planck
data and simulations, demonstrating consistency with existing component
separation algorithms, and discuss how to optimise the use of morphological
information by varying the number of directional wavelets as a function of
spatial scale. We find that combining the use of directional and axisymmetric
wavelets depending on scale could yield higher quality CMB temperature maps.
Our results set the stage for the application of SILC to polarisation
anisotropies through an extension to spin wavelets.Comment: 15 pages, 13 figures. Minor changes to match version published in
MNRAS. Map products available at http://www.silc-cmb.or
Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms
We propose a novel method for constructing Hilbert transform (HT) pairs of
wavelet bases based on a fundamental approximation-theoretic characterization
of scaling functions--the B-spline factorization theorem. In particular,
starting from well-localized scaling functions, we construct HT pairs of
biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet
filters via a discrete form of the continuous HT filter. As a concrete
application of this methodology, we identify HT pairs of spline wavelets of a
specific flavor, which are then combined to realize a family of complex
wavelets that resemble the optimally-localized Gabor function for sufficiently
large orders.
Analytic wavelets, derived from the complexification of HT wavelet pairs,
exhibit a one-sided spectrum. Based on the tensor-product of such analytic
wavelets, and, in effect, by appropriately combining four separable
biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for
constructing 2D directional-selective complex wavelets. In particular,
analogous to the HT correspondence between the components of the 1D
counterpart, we relate the real and imaginary components of these complex
wavelets using a multi-dimensional extension of the HT--the directional HT.
Next, we construct a family of complex spline wavelets that resemble the
directional Gabor functions proposed by Daugman. Finally, we present an
efficient FFT-based filterbank algorithm for implementing the associated
complex wavelet transform.Comment: 36 pages, 8 figure
Localisation of directional scale-discretised wavelets on the sphere
Scale-discretised wavelets yield a directional wavelet framework on the sphere where a signal can be probed not only in scale and position but also in orientation. Furthermore, a signal can be synthesised from its wavelet coefficients exactly, in theory and practice (to machine precision). Scale-discretised wavelets are closely related to spherical needlets (both were developed independently at about the same time) but relax the axisymmetric property of needlets so that directional signal content can be probed. Needlets have been shown to satisfy important quasi-exponential localisation and asymptotic uncorrelation properties. We show that these properties also hold for directional scale-discretised wavelets on the sphere and derive similar localisation and uncorrelation bounds in both the scalar and spin settings. Scale-discretised wavelets can thus be considered as directional needlets
Frames of directional wavelets on -dimensional spheres
The major goal of the paper is to prove that discrete frames of (directional)
wavelets derived from an approximate identity exist. Additionally, a kind of
energy conservation property is shown to hold in the case when a wavelet family
is not its own reconstruction family. Although an additional constraint on the
spectrum of the wavelet family must be satisfied, it is shown that all the
wavelets so far defined in the literature possess this property.Comment: 15 page
Watermarking for multimedia security using complex wavelets
This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms
Analysis of Inpainting via Clustered Sparsity and Microlocal Analysis
Recently, compressed sensing techniques in combination with both wavelet and
directional representation systems have been very effectively applied to the
problem of image inpainting. However, a mathematical analysis of these
techniques which reveals the underlying geometrical content is completely
missing. In this paper, we provide the first comprehensive analysis in the
continuum domain utilizing the novel concept of clustered sparsity, which
besides leading to asymptotic error bounds also makes the superior behavior of
directional representation systems over wavelets precise. First, we propose an
abstract model for problems of data recovery and derive error bounds for two
different recovery schemes, namely l_1 minimization and thresholding. Second,
we set up a particular microlocal model for an image governed by edges inspired
by seismic data as well as a particular mask to model the missing data, namely
a linear singularity masked by a horizontal strip. Applying the abstract
estimate in the case of wavelets and of shearlets we prove that -- provided the
size of the missing part is asymptotically to the size of the analyzing
functions -- asymptotically precise inpainting can be obtained for this model.
Finally, we show that shearlets can fill strictly larger gaps than wavelets in
this model.Comment: 49 pages, 9 Figure
Exact reconstruction with directional wavelets on the sphere
A new formalism is derived for the analysis and exact reconstruction of
band-limited signals on the sphere with directional wavelets. It represents an
evolution of the wavelet formalism developed by Antoine & Vandergheynst (1999)
and Wiaux et al. (2005). The translations of the wavelets at any point on the
sphere and their proper rotations are still defined through the continuous
three-dimensional rotations. The dilations of the wavelets are directly defined
in harmonic space through a new kernel dilation, which is a modification of an
existing harmonic dilation. A family of factorized steerable functions with
compact harmonic support which are suitable for this kernel dilation is firstly
identified. A scale discretized wavelet formalism is then derived, relying on
this dilation. The discrete nature of the analysis scales allows the exact
reconstruction of band-limited signals. A corresponding exact multi-resolution
algorithm is finally described and an implementation is tested. The formalism
is of interest notably for the denoising or the deconvolution of signals on the
sphere with a sparse expansion in wavelets. In astrophysics, it finds a
particular application for the identification of localized directional features
in the cosmic microwave background (CMB) data, such as the imprint of
topological defects, in particular cosmic strings, and for their reconstruction
after separation from the other signal components.Comment: 22 pages, 2 figures. Version 2 matches version accepted for
publication in MNRAS. Version 3 (identical to version 2) posted for code
release announcement - "Steerable scale discretised wavelets on the sphere" -
S2DW code available for download at
http://www.mrao.cam.ac.uk/~jdm57/software.htm
- …
