32,614 research outputs found

    Lagrangian coherent structures and trajectory similarity: two important tools for scientific visualization

    Get PDF
    This thesis studies the computation and visualization of Lagrangian coherent structures (LCS), an emerging technique for analyzing time-varying velocity fields (e.g. blood vessels and airflows), and the measure of similarity for trajectories (e.g. hurricane paths). LCS surfaces and trajectory-based techniques (e.g. trajectory clustering) are complementary to each other for visualization, while velocity fields and trajectories are two important types of scientific data, which are more and more accessible by virtue of the technology development for both data collection and numerical simulation. A key step for LCS computation is tracing the paths of collections of particles through a flow field. When a flow field is interpolated from the nodes of an unstructured mesh, the process of advecting a particle must first find which cell in the unstructured mesh contains the particle. Since the paths of nearby particles often diverge, the parallelization of particle advection quickly leads to incoherent memory accesses of the unstructured mesh. We have developed a new block advection GPU approach that reorganizes particles into spatially coherent bundles as they follow their advection paths, which greatly improves memory coherence and thus shared-memory GPU performance. This approach works best for flows that meet the CFL criterion on unstructured meshes of uniformly sized elements, small enough to fit at least two timesteps in GPU memory. LCS surfaces provide insight into unsteady fluid flow, but their construction has posed many challenges. These structures can be characterized as ridges of a field, but their local definition utilizes an ambiguous eigenvector direction that can point in one of two directions, and its ambiguity can lead to noise and other problems. We overcome these issues with an application of a global ridge definition, applied using the hierarchical watershed transformation. We show results on a mathematical flow model and a simulated vascular flow dataset indicating the watershed method produces less noisy structures. Trajectory similarity has been shown to be a powerful tool for visualizing and analyzing trajectories. In this paper we propose a novel measure of trajectory similarity using both spatial and directional information. The similarity is asymmetric, bounded within [0,1], affine-invariant, and efficiently computed. Asymmetric mappings between a pair of trajectories can be derived from this similarity. Experimental results demonstrate that the measure is better than existing measures in both similarity scores and trajectory mappings. The measure also inspires a simple similarity-based clustering method for effectivly visualizing a large number of trajectories, which outperforms the state-of-the-art model-based clustering method (VFKM)

    Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways

    Full text link
    Diverse classes of proteins function through large-scale conformational changes; sophisticated enhanced sampling methods have been proposed to generate these macromolecular transition paths. As such paths are curves in a high-dimensional space, they have been difficult to compare quantitatively, a prerequisite to, for instance, assess the quality of different sampling algorithms. The Path Similarity Analysis (PSA) approach alleviates these difficulties by utilizing the full information in 3N-dimensional trajectories in configuration space. PSA employs the Hausdorff or Fr\'echet path metrics---adopted from computational geometry---enabling us to quantify path (dis)similarity, while the new concept of a Hausdorff-pair map permits the extraction of atomic-scale determinants responsible for path differences. Combined with clustering techniques, PSA facilitates the comparison of many paths, including collections of transition ensembles. We use the closed-to-open transition of the enzyme adenylate kinase (AdK)---a commonly used testbed for the assessment enhanced sampling algorithms---to examine multiple microsecond equilibrium molecular dynamics (MD) transitions of AdK in its substrate-free form alongside transition ensembles from the MD-based dynamic importance sampling (DIMS-MD) and targeted MD (TMD) methods, and a geometrical targeting algorithm (FRODA). A Hausdorff pairs analysis of these ensembles revealed, for instance, that differences in DIMS-MD and FRODA paths were mediated by a set of conserved salt bridges whose charge-charge interactions are fully modeled in DIMS-MD but not in FRODA. We also demonstrate how existing trajectory analysis methods relying on pre-defined collective variables, such as native contacts or geometric quantities, can be used synergistically with PSA, as well as the application of PSA to more complex systems such as membrane transporter proteins.Comment: 9 figures, 3 tables in the main manuscript; supplementary information includes 7 texts (S1 Text - S7 Text) and 11 figures (S1 Fig - S11 Fig) (also available from journal site
    • …
    corecore