4,862 research outputs found

    Higher-dimensional models of networks

    Full text link
    Networks are often studied as graphs, where the vertices stand for entities in the world and the edges stand for connections between them. While relatively easy to study, graphs are often inadequate for modeling real-world situations, especially those that include contexts of more than two entities. For these situations, one typically uses hypergraphs or simplicial complexes. In this paper, we provide a precise framework in which graphs, hypergraphs, simplicial complexes, and many other categories, all of which model higher graphs, can be studied side-by-side. We show how to transform a hypergraph into its nearest simplicial analogue, for example. Our framework includes many new categories as well, such as one that models broadcasting networks. We give several examples and applications of these ideas

    Quasirandomness in hypergraphs

    Get PDF
    An nn-vertex graph GG of edge density pp is considered to be quasirandom if it shares several important properties with the random graph G(n,p)G(n,p). A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph GG possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.Comment: 19 page

    Finding the K shortest hyperpaths using reoptimization

    Get PDF
    The shortest hyperpath problem is an extension of the classical shortest path problem and has applications in many different areas. Recently, algorithms for finding the K shortest hyperpaths in a directed hypergraph have been developed by Andersen, Nielsen and Pretolani. In this paper we improve the worst-case computational complexity of an algorithm for finding the K shortest hyperpaths in an acyclic hypergraph. This result is obtained by applying new reoptimization techniques for shortest hyperpaths. The algorithm turns out to be quite effective in practice and has already been successfully applied in the context of stochastic time-dependent networks, for finding the K best strategies and for solving bicriterion problems.Network programming; Directed hypergraphs; K shortest hyperpaths; K shortest paths
    • …
    corecore