115 research outputs found

    Numerical Solution of Optimal Control Problems with Explicit and Implicit Switches

    Get PDF
    This dissertation deals with the efficient numerical solution of switched optimal control problems whose dynamics may coincidentally be affected by both explicit and implicit switches. A framework is being developed for this purpose, in which both problem classes are uniformly converted into a mixed–integer optimal control problem with combinatorial constraints. Recent research results relate this problem class to a continuous optimal control problem with vanishing constraints, which in turn represents a considerable subclass of an optimal control problem with equilibrium constraints. In this thesis, this connection forms the foundation for a numerical treatment. We employ numerical algorithms that are based on a direct collocation approach and require, in particular, a highly accurate determination of the switching structure of the original problem. Due to the fact that the switching structure is a priori unknown in general, our approach aims to identify it successively. During this process, a sequence of nonlinear programs, which are derived by applying discretization schemes to optimal control problems, is solved approximatively. After each iteration, the discretization grid is updated according to the currently estimated switching structure. Besides a precise determination of the switching structure, it is of central importance to estimate the global error that occurs when optimal control problems are solved numerically. Again, we focus on certain direct collocation discretization schemes and analyze error contributions of individual discretization intervals. For this purpose, we exploit a relationship between discrete adjoints and the Lagrange multipliers associated with those nonlinear programs that arise from the collocation transcription process. This relationship can be derived with the help of a functional analytic framework and by interrelating collocation methods and Petrov–Galerkin finite element methods. In analogy to the dual-weighted residual methodology for Galerkin methods, which is well–known in the partial differential equation community, we then derive goal–oriented global error estimators. Based on those error estimators, we present mesh refinement strategies that allow for an equilibration and an efficient reduction of the global error. In doing so we note that the grid adaption processes with respect to both switching structure detection and global error reduction get along with each other. This allows us to distill an iterative solution framework. Usually, individual state and control components have the same polynomial degree if they originate from a collocation discretization scheme. Due to the special role which some control components have in the proposed solution framework it is desirable to allow varying polynomial degrees. This results in implementation problems, which can be solved by means of clever structure exploitation techniques and a suitable permutation of variables and equations. The resulting algorithm was developed in parallel to this work and implemented in a software package. The presented methods are implemented and evaluated on the basis of several benchmark problems. Furthermore, their applicability and efficiency is demonstrated. With regard to a future embedding of the described methods in an online optimal control context and the associated real-time requirements, an extension of the well–known multi–level iteration schemes is proposed. This approach is based on the trapezoidal rule and, compared to a full evaluation of the involved Jacobians, it significantly reduces the computational costs in case of sparse data matrices

    A Direct Integral Pseudospectral Method for Solving a Class of Infinite-Horizon Optimal Control Problems Using Gegenbauer Polynomials and Certain Parametric Maps

    Full text link
    We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems (FHOCs) in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points, and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Two illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS- and IPS-methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large, if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid whether they are of Gauss/Gauss-Radau (GR) type or equally-spaced.Comment: 33 pages, 19 figure

    A numerical framework for solving PDE-constrained optimization problems from multiscale particle dynamics

    Get PDF
    In this thesis, we develop accurate and efficient numerical methods for solving partial differential equation (PDE) constrained optimization problems arising from multiscale particle dynamics, with the aim of producing a desired time-dependent state at the minimal cost. A PDE-constrained optimization problem seeks to move one or more state variables towards a desired state under the influence of one or more control variables, and a set of constraints that are described by PDEs governing the behaviour of the variables. In particular, we consider problems constrained by one-dimensional and two-dimensional advection-diffusion problems with a non-local integral term, such as the associated mean-field limit Fokker-Planck equation of the noisy Hegselmann-Krause opinion dynamics model. We include additional bound constraints on the control variable for the opinion dynamics problem. Lastly, we consider constraints described by a two-dimensional robot swarming model made up of a system of advection-diffusion equations with additional linear and integral terms. We derive continuous Lagrangian first-order optimality conditions for these problems and solve the resulting systems numerically for the optimized state and control variables. Each of these problems, combined with Dirichlet, no-flux, or periodic boundary conditions, present unique challenges that require versatility of the numerical methods devised. Our numerical framework is based on a novel combination of four main components: (i) a discretization scheme, in both space and time, with the choice of pseudospectral or fi nite difference methods; (ii) a forward problem solver that is implemented via a differential-algebraic equation solver; (iii) an optimization problem solver that is a choice between a fi xed-point solver, with or without Armijo-Wolfe line search conditions, a Newton-Krylov algorithm, or a multiple shooting scheme, and; (iv) a primal-dual active set strategy to tackle additional bound constraints on the control variable. Pseudospectral methods efficiently produce highly accurate solutions by exploiting smoothness in the solutions, and are designed to perform very well with dense, small matrix systems. For a number of problems, we take advantage of the exponential convergence of pseudospectral methods by discretising in this way not only in space, but also in time. The alternative fi nite difference method performs comparatively well when non-smooth bound constraints are added to the optimization problem. A differential{algebraic equation solver works out the discretized PDE on the interior of the domain, and applies the boundary conditions as algebraic equations. This ensures generalizability of the numerical method, as one does not need to explicitly adapt the numerical method for different boundary conditions, only to specify different algebraic constraints that correspond to the boundary conditions. A general fixed-point or sweeping method solves the system of equations iteratively, and does not require the analytic computation of the Jacobian. We improve the computational speed of the fi xed-point solver by including an adaptive Armijo-Wolfe type line search algorithm for fixed-point problems. This combination is applicable to problems with additional bound constraints as well as to other systems for which the regularity of the solution is not sufficient to be exploited by the spectral-in-space-and-time nature of the Newton-Krylov approach. The recently devised Newton-Krylov scheme is a higher-order, more efficient optimization solver which efficiently describes the PDEs and the associated Jacobian on the discrete level, as well as solving the resulting Newton system efficiently via a bespoke preconditioner. However, it requires the computation of the Jacobian, and could potentially be more challenging to adapt to more general problems. Multiple shooting solves an initial-value problem on sections of the time interval and imposes matching conditions to form a solution on the whole interval. The primal-dual active set strategy is used for solving our non-linear and non-local optimization problems obtained from opinion dynamics problems, with pointwise non-equality constraints. This thesis provides a numerical framework that is versatile and generalizable for solving complex PDE-constrained optimization problems from multiscale particle dynamic

    Activity Report: Automatic Control 2012

    Get PDF
    • …
    corecore