1,162 research outputs found

    Direct simulation of the infinitesimal dynamics of semi-discrete approximations for convection-diffusion-reaction problems

    Get PDF
    In this paper a scheme for approximating solutions of convection-diffusion-reaction equations by Markov jump processes is studied. The general principle of the method of lines reduces evolution partial differential equations to semidiscrete approximations consisting of systems of ordinary differential equations. Our approach is to use for this resulting system a stochastic scheme which is essentially a direct simulation of the corresponding infinitesimal dynamics. This implies automatically the time adaptivity and, in one space dimension, stable approximations of diffusion operators on non-uniform grids and the possibility of using moving cells for the transport part, all within the framework of an explicit method. We present several results in one space dimension including free boundary problems, but the general algorithm is simple, flexible and on uniform grids it can be formulated for general evolution partial differential equations in arbitrary space dimensions

    LES turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method

    LES turbulence Models: relation with stabilized numerical methods

    Get PDF
    Abstract One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method?Preprin

    LES Turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method

    Numerical analysis of conservative unstructured discretisations for low Mach flows

    Get PDF
    This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-and-open-access/open-access/self-archiving.htmlUnstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low-Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell centred velocity reconstructions the standard first-order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd-even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable-density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy preserving scheme is applied to the momentum equations, namely the Symmetry-Preserving (SP) scheme. Furthermore, a new approach to define the far-neighbouring nodes of the QUICK scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self-igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable-density flows. Furthermore, the QUICK schemes shows close to second order behaviour on unstructured meshes and the SP is reliably used in all computations.Peer ReviewedPostprint (author's final draft

    FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft
    corecore