4,048 research outputs found

    Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks

    Get PDF
    Artificial neural networks have been used to investigate their capabilities at estimating key parameters for the characterisation of flow processes, based on electrical capacitance-sensed tomographic (ECT) data. The estimations of the parameters are done directly, without recourse to tomographic images. The parameters of interest include component height and interface orientation of two-component flows, and component fractions of two-component and three-component flows. Separate multi-layer perceptron networks were trained with patterns consisting of pairs of simulated ECT data and the corresponding component heights, interface orientations and component fractions. The networks were then tested with patterns consisting of unlearned simulated ECT data of various flows and, with real ECT data of gas-water flows. The neural systems provided estimations having mean absolute errors of less than 1% for oil and water heights and fractions; and less than 10° for interface orientations. When tested with real plant ECT data, the mean absolute errors were less than 4% for water height, less than 15° for gas-water interface orientation and less than 3% for water fraction, respectively. The results demonstrate the feasibility of the application of artificial neural networks for flow process parameter estimations based upon tomography data

    A schema for generic process tomography sensors

    Get PDF
    A schema is introduced that aims to facilitate the widespread exploitation of the science of process tomography (PT) that promises a unique multidimensional sensing opportunity. Although PT has been developed to an advanced state, applications have been laboratory or pilot-plant based, configured on an end-to-end basis, and limited typically to the formation of images that attempt to represent process contents. The schema facilitates the fusion of multidimensional internal process state data in terms of a model that yields directly usable process information, either for design model confirmation or for effective plant monitoring or control, here termed a reality visualization model (RVM). A generic view leads to a taxonomy of process types and their respective RVM. An illustrative example is included and a review of typical sensor system components is given

    Machine learning for flow field measurements: a perspective

    Get PDF
    Advancements in machine-learning (ML) techniques are driving a paradigm shift in image processing. Flow diagnostics with optical techniques is not an exception. Considering the existing and foreseeable disruptive developments in flow field measurement techniques, we elaborate this perspective, particularly focused to the field of particle image velocimetry. The driving forces for the advancements in ML methods for flow field measurements in recent years are reviewed in terms of image preprocessing, data treatment and conditioning. Finally, possible routes for further developments are highlighted.Stefano Discetti acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 949085). Yingzheng Liu acknowledges financial support from the National Natural Science Foundation of China (11725209)

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    SYMULACJA PRZEPŁYWU GRAWITACYJNEGO I ESTYMACJA JEGO PARAMETRÓW PRZY UŻYCIU ELEKTRYCZNEJ TOMOGRAFII POJEMNOŚCIOWEJ I SZTUCZNYCH SIECI NEURONOWYCH

    Get PDF
    The paper presents a new approach to monitoring changes of characteristic parameters of gravitational solids flow. Electrical Capacitance Tomography (ECT) is applied for non-invasive process monitoring. Artificial Neural Networks (ANN) are used to estimate important flow parameters knowing the measured capacitances. The proposed approach solves the ECT inverse problem in a direct manner and provides a rapid parameterization of the funnel flow. The simulation of the silo discharging process is performed relying on real flow behaviour obtained from the authors’ previous work. The simulated data are used to new approach testing and verification. The obtained results proved that proposed ANN-based method will allow for on-line gravitational solids flow monitoring.W artykule opisano nowe podejście do monitorowania zmian charakterystycznych parametrów przepływu grawitacyjnego. Do nieinwazyjnego monitorowania procesu stosowana jest Elektryczna Tomografia Pojemnościowa (ECT). Sztuczne Sieci Neuronowe wykorzystywane są do estymacji ważnych parametrów przepływu na podstawie mierzonych pojemności. Zaproponowane podejście pozwala na rozwiązanie problemu odwrotnego w ECT w sposób bezpośredni i umożliwia natychmiastową parametryzację przepływu kominowego. Symulacja procesu rozładowania silosu została wykonana na podstawie wyników wcześniejszych badań eksperymentalnych przeprowadzonych na rzeczywistym obiekcie. Dane symulacyjne wykorzystano do testowania i weryfikacji nowego podejścia. Uzyskane wyniki wykazały, iż zaproponowana metoda wykorzystująca Sztuczne Sieci Neuronowe pozwoli na monitorowanie on-line parametrów przepływu grawitacyjnego
    corecore