504 research outputs found

    Polyharmonic approximation on the sphere

    Full text link
    The purpose of this article is to provide new error estimates for a popular type of SBF approximation on the sphere: approximating by linear combinations of Green's functions of polyharmonic differential operators. We show that the LpL_p approximation order for this kind of approximation is σ\sigma for functions having LpL_p smoothness σ\sigma (for σ\sigma up to the order of the underlying differential operator, just as in univariate spline theory). This is an improvement over previous error estimates, which penalized the approximation order when measuring error in LpL_p, p>2 and held only in a restrictive setting when measuring error in LpL_p, p<2.Comment: 16 pages; revised version; to appear in Constr. Appro

    Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant

    Get PDF
    The purpose of this paper is to establish that for any compact, connected C^{\infty} Riemannian manifold there exists a robust family of kernels of increasing smoothness that are well suited for interpolation. They generate Lagrange functions that are uniformly bounded and decay away from their center at an exponential rate. An immediate corollary is that the corresponding Lebesgue constant will be uniformly bounded with a constant whose only dependence on the set of data sites is reflected in the mesh ratio, which measures the uniformity of the data. The analysis needed for these results was inspired by some fundamental work of Matveev where the Sobolev decay of Lagrange functions associated with certain kernels on \Omega \subset R^d was obtained. With a bit more work, one establishes the following: Lebesgue constants associated with surface splines and Sobolev splines are uniformly bounded on R^d provided the data sites \Xi are quasi-uniformly distributed. The non-Euclidean case is more involved as the geometry of the underlying surface comes into play. In addition to establishing bounded Lebesgue constants in this setting, a "zeros lemma" for compact Riemannian manifolds is established.Comment: 33 pages, 2 figures, new title, accepted for publication in SIAM J. on Math. Ana

    Scattered Data Interpolation on Embedded Submanifolds with Restricted Positive Definite Kernels: Sobolev Error Estimates

    Get PDF
    In this paper we investigate the approximation properties of kernel interpolants on manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on Rd\R^d, such as radial basis functions (RBFs), to a smooth, compact embedded submanifold \M\subset \R^d. For restricted kernels having finite smoothness, we provide a complete characterization of the native space on \M. After this and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem. Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R3\R^3 and a two-dimensional torus

    A Study of Different Modeling Choices For Simulating Platelets Within the Immersed Boundary Method

    Get PDF
    The Immersed Boundary (IB) method is a widely-used numerical methodology for the simulation of fluid-structure interaction problems. The IB method utilizes an Eulerian discretization for the fluid equations of motion while maintaining a Lagrangian representation of structural objects. Operators are defined for transmitting information (forces and velocities) between these two representations. Most IB simulations represent their structures with piecewise-linear approximations and utilize Hookean spring models to approximate structural forces. Our specific motivation is the modeling of platelets in hemodynamic flows. In this paper, we study two alternative representations - radial basis functions (RBFs) and Fourier-based (trigonometric polynomials and spherical harmonics) representations - for the modeling of platelets in two and three dimensions within the IB framework, and compare our results with the traditional piecewise-linear approximation methodology. For different representative shapes, we examine the geometric modeling errors (position and normal vectors), force computation errors, and computational cost and provide an engineering trade-off strategy for when and why one might select to employ these different representations.Comment: 33 pages, 17 figures, Accepted (in press) by APNU

    A high-order approximation method for semilinear parabolic equations on spheres

    Get PDF
    We describe a novel discretisation method for numerically solving (systems of) semilinear parabolic equations on Euclidean spheres. The new approximation method is based upon a discretisation in space using spherical basis functions and can be of arbitrary order. This, together with the fact that the solutions of semilinear parabolic problems are known to be infinitely smooth, at least locally in time, allows us to prove stability and convergence of the discretisation in a straight-forward way

    Highly Localized RBF Lagrange Functions for Finite Difference Methods on Spheres

    Full text link
    The aim of this paper is to show how rapidly decaying RBF Lagrange functions on the spheres can be used to create effective, stable finite difference methods based on radial basis functions (RBF-FD). For certain classes of PDEs this approach leads to precise convergence estimates for stencils which grow moderately with increasing discretization fineness
    • …
    corecore