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KERNELS: SOBOLEV ERROR ESTIMATES∗
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Abstract. In this paper we present error estimates for kernel interpolation at scattered sites on
manifolds. The kernels we consider will be obtained by the restriction of positive definite kernels on
Rd, such as radial basis functions, to a smooth, compact embedded submanifold M ⊂ Rd with no
boundary. For restricted kernels having finite smoothness, we provide a complete characterization
of the native space on M. After this and some preliminary setup, we present Sobolev-type error
estimates for the interpolation problem for smooth and nonsmooth kernels. In the case of non-
smooth kernels, we provide error estimates for target functions too rough to be within the native
space of the kernel. Numerical results verifying the theory are also presented for a one-dimensional
curve embedded in R3 and a two-dimensional torus.
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1. Introduction. Kernels have proven to be quite useful in the approximation
of multivariate functions given scattered data, and perhaps the most rudimentary
problem of this type is that of interpolation. Let Ω be a metric space, and let φ :
Ω×Ω → R be a function (which we will refer to as a kernel). Given a target function
f : Ω → R and a finite set of distinct nodes X = {x1, x2, . . . , xN} ⊂ Ω, one can seek
an interpolant IXf via shifts of φ, i.e., IXf takes the form

IXf =
∑
j

cjφ(· , xj)

and satisfies IXf |X = f |X . Finding the appropriate coefficients cj is a matter of
inverting the Gram matrix with entries Ai,j = φ(xi, xj), which is always theoretically
possible if φ is positive definite. The kernel φ can also be used to construct more
general interpolants, such as those where the data is generated from various types
of linear functionals (integral data, derivative data, etc.) [33, 50]. However, in this
paper we will focus on the traditional interpolation problem.

Although kernel approximants were initially considered with the domain being
a Euclidean space or a sphere [47], the ideas have since been generalized enough to
handle functions defined on other mathematical objects. Kernels have been studied
that are positive definite on various Riemannian manifolds [20, 29, 24], and there
are also kernels that exploit the group structure of their underlying manifold, with
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domains such as Lie groups, projective spaces, and motion groups [14, 16, 52]. These
kernels are obtained in various ways in the literature. Some are defined through
manifold charts, some are acquired via a special expansion in terms of eigenfunctions
of the Laplace–Beltrami operator, and others are assumed to be the Green function
for some pseudodifferential operator. Here the kernels can be highly dependent on
the underlying manifold.

In all the cases discussed above, the domains involved are finite-dimensional
smooth manifolds and, according to the Whitney embedding theorem, any such mani-
fold M can be embedded into some Rd (in fact, Nash’s embedding theorem guarantees
that this can be done isometrically). Positive definite kernels on Rd are easy to come
by, so another, seemingly naive, way of obtaining a positive definite kernel on M is
simply by the restriction of a kernel defined on the ambient space. More precisely,
given a kernel φ : Rd × R

d → R and an embedded manifold M ⊂ R
d, we define

ψ(· , ·) := φ(· , ·)|M×M.

If φ is positive definite, so is its restriction to M, making ψ well-suited for interpo-
lation problems. Although the practical value of using such a kernel is not clear in
all the aforementioned situations, in this paper we will see that it is theoretically
and numerically possible to approximate functions defined on manifolds with simple
kernels defined on the ambient space.

While there may be practical benefits to approximating with kernels intrinsic
to the manifold, there are many applications for which an incomplete knowledge or
manageable mathematical description of the underlying manifold may prevent the
construction of the intrinsic kernel. For example, in problems from computer aided
design, graphics and imaging, and computer aided engineering, the manifold may be
a physically relevant geometric object (such as an airplane wing), and a scalar field
(such as pressure or temperature) may need to be interpolated at arbitrary locations
over the object [3, 5, 6, 12, 18, 36]. Additionally, in problems from learning theory,
data samples are from a very-high-dimensional space but are usually assumed to lie
on a relatively low-dimensional embedded submanifold that is virtually unknown [7].
Finally, there has been much recent interest in approximating derivatives of scalar and
vector valued quantities on manifolds in both the graphics (cf. [11, 13, 45]) and the
computational fluid dynamics (cf. [1, 9, 37, 40, 44]) communities. These approxima-
tions are typically used for numerically solving partial differential equations defined on
manifolds (such as the surface of a biological cell or membrane) for modeling processes
like advection-reaction-diffusion of chemicals or fluid flows on the surfaces. Recon-
struction of a function on the underlying manifold is typically first required to then
approximate its derivative.

In all the applications referenced above, the manifold could be represented by a
triangular mesh, points on an implicit function (level set), or more generally by a point
cloud in R3. Since the restricted kernel method under consideration in this study is
mesh-free, it applies easily to all of these cases. Additionally, the kernel’s smoothness
can be increased so that derivatives of the interpolant are well-defined everywhere on
the surface. Finally, the method is based on extrinsic coordinates, which naturally
bypasses any coordinate singularities inherent to a manifold-based coordinate system,
as shown for the unit sphere S2 in [17].

These restricted kernels have been studied extensively both theoretically and nu-
merically in the special case of M = Sd−1 ⊂ Rd (e.g., [17, 31, 51]). Furthermore, to
the authors’ knowledge, they have been the subject of only one numerical study in
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the case of more general two- and three-dimensional manifolds in Rd [38]. The kernels
considered in these papers are radial on Rd, i.e., φ(x, y) = φ(‖x − y‖), and it just so
happens that the restriction of a radial function on Rd to the sphere is zonal, mean-
ing that it depends only on the geodesic distance between its arguments. Even on
more general manifolds, when the kernel possesses such a property there are powerful
tools at one’s disposal—most notably one has a convenient Fourier expansion of the
kernel in terms of eigenfunctions of the Laplace–Beltrami operator [39]. Of course, in
the setting we consider here and in [38] the restricted kernel will not necessarily be
zonal. To circumvent this and other issues, we will appeal to the variational theory
of Madych and Nelson [26] and also to the error analysis of Narcowich, Ward, and
Wendland [35].

In this paper, we will focus specifically on deriving Sobolev-type error estimates
for the interpolation problem at scattered sites on a smooth boundaryless surface M.
The error bounds are given in terms of the mesh norm of the node set X ⊂ M, and
the error will be measured in some Sobolev space. The first of the error estimates we
present (see Theorem 11) holds for a wide variety of radial basis functions (RBFs):
Gaussians, inverse multiquadrics, Wendland functions, and Matérn kernels, to name
a few. However, in this case the target function is assumed to satisfy a certain
smoothness condition, namely, that it resides in the associated native space of the
kernel. For kernels of finite smoothness (e.g., Wendland functions andMatérn kernels),
we will also include error estimates for rougher target functions (see Theorem 17). The
approximation orders of the mesh norm in our error estimates are similar to those
given recently for Euclidean and spherical geometries [32, 35]. We note that even
though we will assume throughout the paper that the manifold is infinitely smooth,
it is not hard to derive estimates on manifolds with only as much smoothness as the
norms involved indicate. It is also possible to extend these results to manifolds with
a Lipschitz boundary, but we leave this more technical case for a separate study.

The paper is organized as follows. In the next section we introduce the necessary
preliminaries, notation for manifolds, Sobolev spaces, and other essential tools. After
that, we will characterize the native space, in terms of concrete function spaces, for
a large class of kernels that have been restricted to embedded submanifolds. We
will then make a brief detour into measuring the distribution of sample points on
embedded submanifolds. This will poise us to present interpolation error estimates
for restricted kernels of finite and infinite smoothness in the case that the target
function is sufficiently smooth. We follow this with the main results of the paper: error
estimates for kernels of finite smoothness in the case of rough target functions. We
conclude with numerical results verifying the two main error estimates from the paper.

2. Notation and preliminaries. We will restrict our study to smooth, con-
nected, compact manifolds with no boundary. For the reader unfamiliar with mani-
folds, an excellent reference is Lee’s book [23]. A k-dimensional manifold M is defined
as a topological spaceM which is locally identified with Rk via a collection of smoothly
compatible coordinate charts. More specifically, there is an atlas A = {(Uj ,Ψj)} of
open sets Uj ⊂ M whose union covers M, and associated smooth one-to-one maps
Ψj : Uj → Rk such that any transition map Ψj ◦Ψ−1

k is a smooth map where it is de-
fined. By refining the charts as necessary, one may assume that the image of any chart
is equal to an open ball around the origin. Also, since the manifolds we consider are
compact, we can obviously assume that any atlas encountered has finitely many charts.

2.1. Embedded submanifolds in Rd. In addition to the features described
previously, the manifolds we consider throughout the paper will be embedded sub-
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manifolds of Rd. However, we warn that authors use the term “embedding” to mean
different things in similar situations. This topic can be subtle, so a precise statement
of what we consider to be an “embedded submanifold” is in order. We will follow the
definition used in [23, Chapter 7], although we state it in less generality. This will
require a few preliminary terms.

Let M ⊂ Rd be a smooth manifold endowed with the subspace topology. Given
x ∈ M, we will denote the tangent space ofM at x by TxM. If F : M → Rd is a smooth
map, the rank of F at x ∈ M is the rank of the Jacobian map F∗ : TxM → TF (x)R

d.
A smooth map is called an immersion if F∗ is injective at each point, i.e., the rank
of F is equal to dim (M). We say that a manifold M is an embedded submanifold of
Rd if the inclusion map ı : M ↪→ Rd is also an immersion. Some authors call such
manifolds regular submanifolds.

2.1.1. Slice charts. There is an equivalent, local characterization of embedded
submanifolds, which uses charts that utilize the ambient space [23, Chapter 8]. Given

an embedded k-dimensional submanifold M ⊂ R
d, there is an atlas Ã = {(Ũj , Ψ̃j)},

where the sets Ũj are open in R
d and cover M, and each Ψ̃j is a 1 − 1 smooth map

from Ũj to some ball around the origin, say, B(0, rj), that “straightens” the manifold.
By this we mean that

Ψ̃j(M ∩ Ũj) ⊂ B′(0, rj),

where B′(0, rj) = {y ∈ B(0, rj) | yk+1 = yk+2 = · · · = yd = 0} can be viewed as a

copy of an open ball in Rk. The charts (Ũj , Ψ̃j) are sometimes referred to as slice

charts. If we define Uj := M ∩ Ũj and Ψj := Ψ̃j|Uj , then A = {(Ψj, Uj)} is an
atlas for M in the usual sense. Also, one can assume that Ψj : Uj → B′(0, rj) and

Ψ̃j : Ũj → B(0, rj) are bijections without any loss of generality.

2.1.2. Distances on embedded submanifolds. If M is an embedded sub-
manifold of Rd, its topology is naturally induced by the Euclidean metric. This being
the case, M automatically inherits a distance function dM : M ×M → R. Assuming
M is connected, given x, y ∈ M we can define the distance between x and y to be

dM(x, y) := inf
γ:[0,1]→M

γ(0)=x
γ(1)=y

∫ 1

0

‖γ′(t)‖ dt,

where γ is any piecewise smooth curve in M beginning at x and ending at y, and
‖γ′(t)‖ is the Euclidean length of the tangent vector γ′(t). Given an x ∈ M, we
denote by BM(x, r) the open ball of radius r centered at x, i.e., BM(x, r) = {y ∈
M | dM(y, x) < r}. In the case where the underlying manifold is Rd we omit the
subscript and simply write B(x, r).

2.1.3. Tubular neighborhoods. It is well known that any embedded subman-
ifold of Rd has a tubular neighborhood, which is a neighborhood of M in Rd analogous
to a tube around a curve in 3-space. A precise definition of a tubular neighborhood
would require much more notation than we need here, so we omit these details and
instead present a useful consequence of its existence. The interested reader can find
a full discussion of the subject in most introductory books on smooth manifolds [23].

Proposition 1. Let M be a compact, smooth embedded submanifold of Rd. Then
there exists a neighborhood Uε(M) := {y ∈ Rd | dist(y,M) < ε} and a canonical smooth
map R : Uε(M) → M such that R|M is the identity map on M.
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In this case we call ε the radius of the tubular neighborhood Uε(M), and the
map R is called a retraction. We remark that by restricting the radius of the tubular
neighborhood slightly we can assume that the domain of R is compact.

2.2. Sobolev spaces. The class of functions we will be interested in approxi-
mating are from the Sobolev spaces, which are spaces that consist of all f ∈ Lp that
have distributional derivatives Dαf in Lp for all multi-indices up to some order. For
Sobolev spaces on Rd, we will follow the notation of Adams [2]. Let Ω be a neigh-
borhood in Rd, 1 ≤ p <∞, and m be a nonnegative integer. The associated Sobolev
norms are defined via

‖f‖Wm
p (Ω) :=

⎛⎝ ∑
|α|≤m

‖Dαf‖pLp(Ω)

⎞⎠1/p

.

For the case p = ∞ we have

‖f‖Wm∞(Ω) := max
|α|≤m

‖Dαf‖L∞(Ω).

It is also possible to have Sobolev spaces of fractional order. Let 1 ≤ p <∞, m be a
nonnegative integer, and 0 < t < 1. We define the Sobolev space Wm+t

p (Ω) to be all
f such that the following norm is finite:

‖f‖Wm+t
p (Ω) :=

⎛⎝‖f‖pWm
p (Ω) +

∑
|α|=k

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|p
‖x− y‖d+pt2

dxdy

⎞⎠1/p

.

We define the Sobolev spaces on embedded submanifolds as follows. Let M ⊂ R
d

be a compact submanifold of dimension k. Let Ã = {(Ũj , Ψ̃j)} be an atlas of slice
charts for M, and let A = {(Uj ,Ψj)} be the associated intrinsic atlas. Now let {χj}
be a partition of unity subordinate to {Ũj}. If f is a function defined on M, we have
the projections πj(f) : R

k → R by

πj(f)(y) =

{
χjf(Ψ

−1
j (y)), y ∈ B′(0, rj),
0 otherwise.

Using this construction, one can now define Sobolev spaces for 1 ≤ p <∞ and s ≥ 0
via the norms

‖f‖W s
p (M) :=

⎛⎝ N∑
j=2

‖πj(f)‖2W s
p (R

k)

⎞⎠1/2

,

whereN is obviously the number of charts in the atlas. The norm forW s
p (M) obviously

depends on the particular choice of atlas Ã and the partition of unity. However, if
one uses different collections of these objects, the same space arises and the norms
are equivalent. (The details for the case k = d−1 can be found in Lions and Magenes
[25]; for general k < d the argument is similar.) Also, as is customary in the case
p = 2 we define Hs(M) := W s

2 (M).
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2.3. Trace. Given any subset Ω ⊂ Rd, one has a continuous trace operator
TΩ : C(Rd) → C(Ω) that acts on functions by restricting them to Ω, i.e., TΩ(f) = f |Ω.
Extending the trace operator to other classes of functions is a well-studied subject (see
[2, Chapter VII] or [8, Chapter 5]). In the case when Ω is a submanifold of Rd, the basic
idea is that restricting a function f ∈ W τ

p (R
d) to the submanifold “costs” 1/p units

of smoothness for each dimension, e.g., if M is a smooth submanifold of dimension

k, then f |M ∈ W
τ−(d−k)/p
p (M). However, there are restrictions. For example, when

p > 2 the embeddings do not necessarily hold when τ − (d − k)/p is a nonnegative
integer [2, Theorem 7.58]. One can get around this and other subtle issues by instead
considering Besov spaces. Nevertheless, in the case we will be interested in, i.e., p = 2,
we will not have to shift our focus to these spaces. The following is the trace result
we require (see, for example, [8, section 25]).

Proposition 2. Let 1 ≤ k ≤ d and let τ > (d − k)/2. Let M be a smooth k-
dimensional compact embedded submanifold of Rd. Then the trace operator TM extends
to a continuous operator mapping Hτ (Rd) onto Hτ−(d−k)/2(M). Further, there is a
reverse embedding, i.e., there is a bounded linear map EM : Hτ−(d−k)/2(M) → Hτ (Rd)
such that EMu|M = u for all u ∈ Hτ−(d−k)/2(M).

Given the importance of this in what follows, we will devote the rest of this section
to outlining the construction of these operators. The basic idea, as is the case for most
results on manifolds, is to use results on Euclidean spaces, then move to the manifold
by working on coordinate charts.

First, the result of the trace theorem holds when restricting functions to hy-
perplanes. Let Tk be the operator that restricts functions on Rd to Rk. Then
Tk : Hτ (Rd) → Hs(Rk), where s = τ − (d − k)/2, is a continuous map. (For a
nice outline of the proof, see [46].) The manifold case can then be handled by ap-
plying Tk on coordinate charts and mapping back to the manifold. Specifically, let
f ∈ Hτ (Rd), {(Ũj , Ψ̃j)} be an exterior atlas for M, and let {χj} be a partition of

unity subordinate to {Ũj}. Given a particular patch (Ũj , Ψ̃j), consider the function

fj = (χjf) ◦ Ψ̃−1
j : B(0, rj) → R. Now define gj := [Tkfj ] ◦ Ψj , which is compactly

supported in Uj. Then it can be shown, with some work, that TMf =
∑
gj is the

restriction of f to the manifold and has the desired properties.
For the extension operator, one constructs EM by first defining a linear extension

operator E1 : C∞(Rn−1) → C∞(Rn). After choosing any compactly supported η ∈
C∞(R) such that η(0) = 1 and any compactly supported λ ∈ C∞(Rn−1) such that∫
Rn−1 λ(x) dx = 1, define

(E1f)(x, xn) := η(xn)

∫
Rn−1

f(x− txn)λ(t)dt,

where here we have identified a point in Rn as (x, xn) with x ∈ Rn−1 and xn ∈
R. Obviously we have (E1f)(x, 0) = f(x). Further, the operator can be shown to
continuously map Hτ−1/2(Rn−1) into Hτ (Rn). (Again, for an outline of the proof,
see [46].) By applying a similar operator several times, one can construct a linear
operator E′ extending functions continuously from Hτ−(d−k)/2(Rk) to Hτ (Rd).

Given a function f defined on M, consider its projection πj(f), whose support
resides in some ball in Rk centered at the origin. By judicious choices of the functions
η and λ, one can ensure that the extension gj = E′(πj(f)) is compactly supported

within Ψ̃j(Ũj), so that Fj = gj ◦ Ψ̃j is compactly supported within Ũj . Once this
is done, one can define the extension EMf :=

∑
Fj . Using the continuity of E′ and
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the fact that Sobolev norms are equivalent under a smooth change of coordinates [2,
Theorem 3.35], it is not hard to show that EM is continuous in the appropriate norms.

2.4. Positive definite kernels and native spaces. Let Ω ⊂ R
d, and recall

that an N×N matrix A is positive definite if given any nonzero c ∈ RN , the quadratic
form cTAc is strictly positive. We say that a kernel φ : Ω×Ω → R is positive definite
on Ω if given any finite set of distinct nodes {x1, x2, . . . , xN} ⊂ Ω, the N ×N Gram
matrix with entries Ai,j = φ(xi, xj) is positive definite (and hence invertible). All
the kernels we consider in this paper have this property, so we will take “kernel” to
mean “positive definite kernel.” A kernel that depends only on the distance between
its arguments, i.e., φ(x, y) = φ(‖x − y‖), is an RBF. This subclass of kernels is of
particular importance; they are essentially one-dimensional.

Typically approximation is well understood for target functions coming from the
so-called native space of the kernel, which is a reproducing kernel Hilbert space gen-
erated by the kernel. We define the native space of a given kernel φ on Ω in the usual
way, that is, by taking the closure of the pre-Hilbert space

Fφ =

⎧⎨⎩f
∣∣∣∣∣∣ f =

N∑
j=1

cjφ(· , xj), xj ∈ Ω, cj ∈ R

⎫⎬⎭
in the inner product〈

N∑
j=1

cjφ(· , xj),
M∑
k=1

dkφ(· , yk)
〉
Fφ

=

M∑
k=1

N∑
j=1

dkψ(yk, xj)cj .

We will denote the native space of φ by Nφ.
Defined in this way the native space can seem quite abstract, and characterizing

it in terms of more well known function spaces is helpful in finding classes of functions
that can be approximated by shifts of φ. The structure of the native space for kernels
of finite smoothness on Euclidean spaces is well known. To be more specific, if φ is a
kernel on Rd whose Fourier transform, denoted by φ̂, has algebraic decay, i.e.,

(1) φ̂(ξ) ∼ (1 + ‖ξ‖22)−τ , τ > d/2,

then Nφ = Hτ (Rd) with equivalent norms.
We end this section by stating a well-known, indispensable property of kernel

interpolants. If f ∈ Nφ, then IXf is the orthogonal projection (in Nφ) of f onto the
subspace span

xj∈X
φ(·, xj). This immediately gives one

‖f − IXf‖Nφ ≤ ‖f‖Nφ and ‖IXf‖Nφ ≤ ‖f‖Nφ .

3. Native spaces for restricted kernels. As mentioned previously, one ap-
proach to finding functions that can be approximated by a given kernel is to determine
the native space of that kernel. In this section we characterize the native space for pos-
itive definite kernels that have been restricted to an embedded manifold. Let φ(x, y)
be a positive definite kernel on Rd satisfying (1). Given an embedded submanifold
M ⊂ Rd, we define the kernel ψ on M by restricting φ to the manifold, i.e.,

ψ(· , ·) := φ(· , ·)|M×M.
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As stated in the introduction, it is clear that ψ inherits the positive definiteness of φ.
Thus ψ generates a native space on M, which we denote by Nψ .

In the case of M = Sd−1 ⊂ Rd, the native spaces of restricted RBFs have been
historically studied by investigating the decay of the kernel’s Fourier–Legendre coeffi-
cients [31, 51]. However, the methods used in these papers are difficult to apply when
the manifold is more general, e.g., the connection between the intrinsic Fourier coef-
ficients and Fourier transform of the extrinsic kernel might be unclear, so we need to
take a different perspective. The arguments we use ultimately rely on the variational
approach due to Madych and Nelson, which completely avoids the use of the Fourier
transform [26]. The following is from section 8 of that paper.

Proposition 3. Let Ω ⊂ Rd and let κ : Ω×Ω → R be a positive definite kernel.
Finally, let L(Ω) the set of linear functionals given by finite linear combinations of
point evaluations, i.e.,

L(Ω) :=

⎧⎨⎩λ =

N∑
j=1

αjδxj
∣∣ N ∈ N, α ∈ R

d, xj ∈ Ω

⎫⎬⎭ .

Then we have f ∈ Nκ if and only if there is a constant Cf so that

|λ(f)| ≤ Cf‖λ‖N∗
κ
.

Further,

‖f‖Nκ = sup
λ∈L(Ω),λ	=0

λ(f)

‖λ‖N∗
κ

.

Before we can prove our results, we need a lemma. The following is due to
Schaback [42, section 9] and can also be found in Wendland’s book [48, Theorems 10.46
and 10.47]. We include the proof here to illustrate the role Proposition 3 in our study.

Lemma 4. Let φ and ψ be related as above. Then we have the following:
1. There is a natural linear operator E : Nψ → Nφ such that Ef |M = f and

‖Ef‖Nφ = ‖f‖Nψ .
2. The native spaces of φ and ψ are related via

Nψ = TM (Nφ) .

3. The trace operator TM : Nφ → Nψ is continuous with ‖TM‖ ≤ 1.
Proof. First we define the extension operator E : Fψ → Fφ by

E

⎛⎝ N∑
j=1

cjψ(·, xj)
⎞⎠ =

N∑
j=1

cjφ(·, xj).

Clearly we have that ‖Ef‖Nφ = ‖f‖Nψ for all f ∈ Fψ . For a given f ∈ Nψ, one can
define its extension as follows. By density of Fψ , we may choose a Cauchy sequence
fn ∈ Fψ converging to f in Nψ . Since ‖Efn‖Nφ = ‖fn‖Nψ , the sequence Efn is
Cauchy in Nφ, so it converges to some gf ∈ Nφ. From this one can show that
Ef := gf is a well-defined mapping. Since E preserves norms for all members of the
dense subset Fψ , we conclude that E is an isometry.
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For 2, it is clear from 1 thatNψ ⊆ TM (Nφ). Focusing now on the reverse inclusion,
let f ∈ TM (Nφ). Then there is a g ∈ Nφ such that TMg = f . By Proposition 3, we
need to find a constant Cf such that

|λ(f)| ≤ Cf‖λ‖N∗
ψ

for all λ ∈ L(M). First, we have λ(f) = λ(g) and ‖λ‖N∗
ψ
= ‖λ‖N∗

φ
for all λ ∈ L(M),

giving

|λ(f)| = |λ(g)| ≤ Cg‖λ‖N∗
φ
= Cg‖λ‖N∗

ψ
.

Thus f ∈ Nψ . Further, note that since L(M) ⊂ L(Rd) we have

‖f‖Nψ = sup
λ∈L(M),λ	=0

λ(f)

‖λ‖N∗
ψ

= sup
λ∈L(M),λ	=0

λ(g)

‖λ‖N∗
φ

≤ sup
λ∈L(Rd),λ	=0

λ(g)

‖λ‖N∗
φ

= ‖g‖Nφ .

This shows that the trace operator is continuous with norm less than one, and this
completes the proof.

Now we are ready to present a characterization for the native space of the re-
stricted kernel.

Theorem 5. If φ satisfies (1), then Nψ = Hτ−(d−k)/2(M) with equivalent
norms.

Proof. Our choice of φ gives Nφ = Hτ (Rd) with equivalent norms. By Proposi-
tion 2 and Lemma 4 we have

Nψ = TM(Nφ) = TM(H
τ (Rd)) = Hτ−(d−k)/2(M).

Next we show that the native space norm dominates the Sobolev norm by a con-
stant factor. Note that f = TMEf and that the trace operator is continuous on the
appropriate Sobolev spaces. Now we have

‖f‖Hτ−(d−k)/2(M) = ‖TMEf‖Hτ−(d−k)/2(M) ≤ C‖Ef‖Hτ (Rd)
≤ C‖Ef‖Nφ = C‖f‖Nψ .

It is a well-known consequence of the interior mapping theorem that in such situations
the norms must be equivalent (see, for example, [10, Corollary 2 in section 1.8]).

4. Interpolation via restricted kernels. We are ready to shift our focus to
the approximation of functions within certain Sobolev spaces using restricted kernels.
The methods we use are related to those used by Narcowich, Ward, and Wendland
[35], although the present situation is different enough so that there is still work to
be done before we can successfully apply their methods.

4.1. Node measures on submanifolds of RdRdRd. Given a finite node set X from
a metric space Θ, error estimates are typically given in terms of the fill distance, or
mesh norm of the points, which is defined to be

hX,Θ := sup
x∈Θ

min
xj∈X

dΘ(x, xj),
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where dΘ is the distance metric between x and y intrinsic to Θ. Another important
measure is the separation radius, given by

qX,Θ := min
xj,xk∈X
xj 	=xk

1

2
dΘ(xj , xk).

Since we wish to study approximation on a manifold, it is important that our results be
stated in terms of the mesh norm and separation radius intrinsic to the manifold. Note
that our node sets simultaneously reside in several different metric spaces, namely,
Rd, M, and Rk (through chart mappings). We will need the “node measures” on all
three of these spaces, and it will be convenient to put them on equal footing. This is
not a difficult task, but it is a detail that must be dealt with nonetheless.

First we show that qX,M ∼ qX,Rd .
Theorem 6. Let M ⊂ Rd be a smooth compact embedded submanifold of di-

mension k < d. Then dM(x, y) ∼ ‖x − y‖ for all x, y ∈ M. In particular, we have
qX,M ∼ qX,Rd for all finite node sets X ⊂ M.

Proof. Clearly we have ‖x − y‖ ≤ dM(x, y). Now we find a bound in the other
direction. Since M is smooth and compact, we know from Proposition 1 that there is
a compact tubular neighborhood Uε(M) with normal radius ε and smooth retraction
R : Uε(M) → M. Given x, y ∈ M, we consider two cases: ‖x−y‖ ≥ ε and ‖x−y‖ < ε.
If ‖x− y‖ ≥ ε, we have

dM(x, y) =
dM(x, y)

‖x− y‖ ‖x− y‖ ≤ diam(M)

ε
‖x− y‖.

Now assume 0 < ‖x − y‖ < ε. Notice that y ∈ B(x, ε) ⊂ Uε(M), so the param-
eterized line l : [0, 1] → R

d starting at x and ending at y is completely contained in
Uε(M). Thus R ◦ l is a smooth parameterized curve in M starting at x and ending
at y. Now we use the arclength definition of the distance metric and the fact that
l′(t) = y − x to get

dM(x, y) = inf
γ:[0,1]→M

γ(0)=x
γ(1)=y

∫ 1

0

∥∥∥∥dγdt
∥∥∥∥ dt ≤ ∫ 1

0

∥∥∥∥ ddt (R ◦ l)
∥∥∥∥ dt

=

∫ 1

0

‖(DR)|l(t)l′(t)‖ dt ≤
∫ 1

0

‖DR‖∞‖x− y‖ dt
= ‖DR‖∞‖x− y‖,

where ‖DR‖∞ denotes a bound on the matrix norm of the Jacobian matrix DR,
which we know to be bounded since R is smooth and its domain is compact. The
result now follows.

The reader should note that the discrepancy between qX,M and qX,Rd could be
quite large, e.g., consider nodes taken at the poles of a flattened ball. However, if the
node set is sufficiently dense this will not be an issue.

Now we shift our focus to the mesh norm. The first step is to show that distances
are preserved under chart mappings. This has been taken care of in the case of
homogeneous manifolds in [24, Proposition 3.3], and we cite its proof to deal with our
situation.

Proposition 7. Let M be a compact smooth manifold of dimension k. Then
there exists an atlas A = {(Ψj, Uj)} for M and associated positive constants c1, c2
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such that for all x, y ∈ M, if x, y ∈ Uj for some j we have

c1‖Ψj(x) −Ψj(y)‖ ≤ dM(x, y) ≤ c2‖Ψj(x) −Ψj(y)‖.
Proof. Since M is a smooth and compact manifold, we get a smooth atlas A =

{(Ψj, Uj)} containing finitely many charts for M. By refining our charts as necessary,
we may assume that the images of these charts is equal to a ball in Rk centered around
the origin. Since our manifold is smooth and the images of our charts are convex, the
arguments in the proof of [24, Proposition 3.3] follow to find positive constants c1,j
and c2,j such that

c1,j‖Ψj(x)−Ψj(y)‖ ≤ dM(x, y) ≤ c2,j‖Ψj(x)−Ψj(y)‖ ∀ x, y ∈ Uj .

Now simply set c1 := minj c1,j and c2 := maxj c2,j, and the proof is complete.
From here on, we let A = {(Ψj , Uj)} be such an atlas for M, with each Ψj being

a bijection from Uj to some ball B′(0, rj) ⊂ Rk. In the next section we will be
able to easily obtain error bounds on each chart in terms of the mesh norm in Rk,
hΨj(X),B′(0,rj). In an effort to use a mesh norm intrinsic to the manifold, consider the
following. With the result above, we have

hX∩Uj ,Uj ∼ hΨj(X),B′(0,rj),

which gives us in particular that

(2) hΨj(X),B′(0,rj) ≤ ChX∩Uj ,Uj .

Using this, a useful global density of X on M is h∗ := maxj hX∩Uj,Uj , but this is not
as strong as the mesh norm hX,M. Indeed, it is not hard to show that hX,M ≤ h∗.
However, for node sets yielding a mesh norm hX,M small enough, h∗ and hX,M are
equivalent.

Theorem 8. Let M be a compact smooth manifold of dimension k, and let
A = {(Ψj, Uj)} be an atlas for M satisfying Proposition 7. Then there exists constants
h0, C > 0 so that for any finite node set X ⊂ M with hX,M < h0, we have

hX∩Uj,Uj ≤ C hX,M ∀Uj.
Proof. Recall that we may assume that every map Ψj is a smooth bijection onto

a ball of radius rj > 0. Define r = minj rj . We will exploit geometry of the situation
by using the fact that balls satisfy an interior cone condition. Given a point x ∈ Rk,
unit vector ξ, radius R, and angle θ ∈ (0, π/2), we define the cone

C(x, ξ, R, θ) := {x+ λy | y ∈ R
k, ‖y‖ = 1, yT ξ ≥ cos(θ), λ ∈ [0, R]}.

Below are the geometric facts we require [48, Lemmas 3.7, 3.10]:
1. Let C(x, ξ, R, θ) be a cone of radius R and angle θ. If h < R/(1 + sin(θ)),

then the cone contains a closed ball of radius h sin(θ) centered a distance h
away from x.

2. Every ball with radius R > 0 satisfies an interior cone condition with radius
R and angle θ = π/3, i.e., for every x in the ball, a unit vector ξ(x) exists
such that C(x, ξ(x), R, θ) is contained in the ball.

With this insight, we choose h0 := rc1 sin(θ)/(1+sin(θ)), where θ = π/3 and c1 is the
constant from the lower bound in Proposition 7. Assuming hX,M ≤ h0, we will show
that given x ∈ Uj, there is a point within X∩Uj whose distance from x is comparable
to hX,M.
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Let x ∈ Uj and consider the ball Ψj(Uj). Since the ball satisfies an interior cone
condition with radius rj ≥ r, by the remarks above we can find a closed ball of radius
hX,M/c1 centered at some Ψj(y) satisfying ‖Ψj(x) − Ψj(y)‖ = hX,M/(c1 sin(θ)). We
denote this ball by B1 and note that we have Ψ−1

j (B1) ⊂ Uj . Further, since Ψj and

its inverse are open topologically, Ψ−1
j (B1) is a neighborhood of y and there is some

closed ball centered at y completely contained in Ψ−1
j (B1).

Let ρ be the maximum radius of such a ball, i.e., B(y, ρ) ⊂ Ψ−1
j (B1), and given

any ρ′ > ρ there is a z′ ∈ B(y, ρ′) such that z′ /∈ Ψ−1
j (B1). Note that this maximum

radius must be attained at some z ∈ ∂Ψ−1
j (B1). Also note that z must map to

the boundary of B1 through Ψj: if not, then because Ψ−1
j is open, we could find a

neighborhood of z completely contained in Ψ−1
j (B1), contradicting the fact that it

was chosen on the boundary. Thus we have

ρ = dM(y, z) ≥ c1‖Ψj(y)−Ψj(z)‖ = c1

(
hX,M
c1

)
= hX,M.

Since ρ ≥ hX,M, it follows that there must be a point xk ∈ X ∩ B(y, ρ) ⊂
Ψ−1
j (B1) ⊂ Uj . Now we have

dM(x, xk) ≤ dM(x, y) + dM(y, xk)

≤ c2‖Ψj(x)−Ψj(y)‖+ c2‖Ψj(xk)−Ψj(y)‖

≤ c2
hX,M

c1 sin(θ)
+ c2

hX,M
c1

≤ c2
c1

(
2 +

√
3√

3

)
hX,M = ChX,M.

Since x and Uj were arbitrary, this proves that hX∩Uj ,Uj ≤ ChX,M.

4.2. Interpolation error estimates. We now have the tools necessary to pro-
vide error bounds. First we present estimates that apply to target functions coming
from the native space of the approximating kernel. This result will apply to both
smooth and rough kernels. After this, we concentrate specifically on kernels of finite
smoothness, and in this case we will give estimates for target functions that are not
smooth enough to be within the native space.

To derive our estimates, we will first make use of the “many zeros” Sobolev
sampling inequality of Narcowich, Ward, and Wendland, which allows one to extract
the appropriate powers of the mesh norm from the error function [34]. Here is a
statement of an improved version of that result [4, Theorem 4.1].

Proposition 9. Let Ω be a compact subset of Rn having a Lipschitz boundary.
Let 1 ≤ p, q ≤ ∞, s ∈ R with s > n/p if p > 1 or s ≥ n if p = 1. Let μ ∈ N satisfy
0 ≤ μ ≤ �s− n(1/p− 1/q)+� − 1. Also, let X ⊂ Ω be a discrete set with mesh norm
hX,Ω. Then there is a constant depending only on Ω such that if hX,Ω ≤ CΩ and if
u ∈W s

p (Ω) satisfies u|X = 0, then

(3) |u|Wμ
q (Ω) ≤ Ch

s−μ−n(1/p−1/q)+
X,Ω |u|W s

p (Ω),

where (x)+ = x if x ≥ 0 and is 0 otherwise. Here the constant C is independent of
hX,Ω and u.

By applying this sampling inequality to charts, it is easy to obtain a similar result
for manifolds. This has been done before in several other situations, but we include
the proof here for completeness.
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Lemma 10. Let M be a smooth manifold of dimension k, and let 1 ≤ p, q ≤ ∞,
t ∈ R with t > k/p if p > 1 or t ≥ k if p = 1. Let μ ∈ N satisfy 0 ≤ μ ≤
�t−k(1/p−1/q)+�−1. Also, let X ⊂ M be a discrete set with mesh norm hX,M. Then
there is a constant depending only on M such that if hX,M ≤ CM and if u ∈ W t

p(M)
satisfies u|X = 0, then

|u|Wμ
q (M) ≤ Ch

t−μ−k(1/p−1/q)+
X,M |u|W t

p(M).

Proof. Let A = {(Uj ,Ψj)} be an atlas for M satisfying Proposition 7. We will
choose hM small enough so that Theorem 8 holds and so that Proposition 9 can be
applied to the images of all patches in Rk. The seminorm is given by

|u|Wμ
q (M) =

⎛⎝ N∑
j=1

|πj(u)|2Wμ
q (Rk)

⎞⎠1/2

.

Any function projected under πj is supported on Ψj(Uj), so we have

|πj(u)|2Wμ
q (Rk) = |πj(u)|2Wμ

q (Ψj(Uj))
.

Note that πj(u) is a Sobolev function with many zeros on the set Ψj(X∩Uj). Applying
Proposition 9 and using (2) with Theorem 8 gives us

|πj(u)|Wμ
q (Ψj(Uj)) ≤ Ch

t−μ−k(1/p−1/q)+
X,M |πj(u)|W t

p(Ψj(Uj))
,

where the constant is independent of X and f . Applying this estimate to all patches
gives us

|u|Wμ
q (M) ≤ Ch

t−μ−k(1/p−1/q)+
X,M |u|W t

p(M).

In what follows we will rely on the fact that the results of Lemma 10 hold for the
full Sobolev norms as well.

Now we are ready to state our first approximation result. We assume that for
some τ > d/2 the kernel satisfies

(4) ‖f‖Hτ (Rd) ≤ Cτ,φ‖f‖Nφ ∀ f ∈ Nφ,

where Cτ,φ is a constant depending only on τ and φ, i.e., the native space is continu-
ously embedded in Hτ (Rd). This certainly holds if the Fourier transform of φ decays
at least algebraically; thus the theorem below will apply to kernels whose Fourier
transform decays exponentially, e.g., Gaussians, inverse multiquadrics. Recall our no-
tation for kernel interpolants: given a finite node set X , kernel ψ and target function
f , we let IXf denote the interpolant to f on X found via shifts of ψ.

Theorem 11. Let M be a k-dimensional submanifold of Rd and φ be a positive
definite kernel satisfying (4), and define ψ by restricting φ to M. Let s = τ−(d−k)/2,
and let μ and q be as in Lemma 10 with p = 2 and t = s. Then there is a constant
hM such that if a finite node set X ⊂ M satisfies hX,M ≤ hM, then for all f ∈ Nψ we
have

‖f − IXf‖Wμ
q (M) ≤ Ch

s−μ−k(1/2−1/q)+
X,M ‖f‖Nψ .
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Proof. First note that since Nφ is continuously embedded within Hτ (Rd), it
follows that Nψ is continuously embedded within Hs(M). Indeed, by letting E be the
extension operator from Lemma 4, we have

‖g‖Hs(M) = ‖TMEg‖Hs(M) ≤ C‖Eg‖Hτ (Rd) ≤ C‖Eg‖Nφ = C‖g‖Nψ ,
where the constants are independent of g ∈ Nψ. Now for any f ∈ Nψ, apply Lemma 10
with t = s to get

‖f − IXf‖Wμ
q (M) ≤ Ch

s−μ−k(1/2−1/q)+
X,M ‖f − IXf‖Hs(M).

An application of the embedding estimate above in conjunction with the continuity
of the interpolation error operator gives us

‖f − IXf‖Hs(M) ≤ C‖f − IXf‖Nψ ≤ C‖f‖Nψ .
This completes the proof.

Remark 12. Note that if the Fourier transform of the kernel decays exponentially,
then (4) holds for all τ > d/2, which implies that the convergence is faster than
O(hmX,M) for any m > 0. It is well known, however, that such kernels enjoy spectral

convergence rates in Rd, and we suspect the same is true in the manifold case. We
leave this question for future research.

For the remainder of this section, we will shift our focus to nonsmooth kernels.
When φ has finite smoothness, i.e., φ satisfies (1), an immediate consequence of the
last result combined with Theorem 5 is the following.

Corollary 13. Let M be a k-dimensional submanifold of Rd and φ be a positive
definite kernel satisfying (1), and define ψ by restricting φ to M. Let s = τ−(d−k)/2,
and let μ and q be as in Lemma 10 with p = 2 and t = s. Then there is a constant
hM such that if a finite node set X ⊂ M satisfies hX,M ≤ hM, for all f ∈ Hs(M) we
have

‖f − IXf‖Wμ
q (M) ≤ Ch

s−μ−k(1/2−1/q)+
X,M ‖f‖Hs(M).

When the target function is very smooth, there is a “doubling trick” from spline
theory that can be used to increase the order of hX,M in the error estimates. This was
first commented on for RBFs in Rd by Schaback in [41] and has also been observed
in other RBF-related contexts [19, 28]. The error doubling on more general domains,
including Riemannian manifolds, was considered in [43], and Theorem 5.1 of that
paper gives pointwise error estimates for very smooth functions in terms of the so-
called power function. Using similar methods along with Theorem 11, we get Sobolev
error estimates doubling the order of hX,M.

A main ingredient for the doubling trick is to rewrite the native space inner
product in terms of an L2 inner product of functions that have been acted upon by
a pseudodifferential operator depending on the kernel. This is achieved in Rd using
the Fourier transform and in the case of the sphere by using eigenfunction expansions
of the Laplace–Beltrami operator Δ. For more general domains, one can use a well-
known result of Mercer to find the appropriate native space machinery. The tools
outlined below can be found in [43].

We define the integral operator T : L2(M) → L2(M) by

Tf(x) :=

∫
M

ψ(x, y)f(y) dy.
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Since our kernel is continuous and M is compact, we may invoke Mercer’s theorem
(see [15, Theorem 1.1], for example). Mercer’s theorem guarantees a countable set of
positive eigenvalues λ1 ≥ λ2 ≥ · · · > 0 and continuous eigenfunctions {ϕn}n∈N such
that Tϕn = λnϕn. Further, {ϕn}n∈N provides an orthonormal basis for L2(M), and
ψ(x, y) has the expansion

ψ(x, y) =

∞∑
n=1

λnϕn(x)ϕn(y).

Finally, with these tools one has the following characterization of the native space. A
proof can be found in [43, sections 7, 8].

Proposition 14. Let ψ be a positive definite kernel on M. Then its native space
is given by

Nψ =

{
f ∈ L2(M)

∣∣∣∣∣
∞∑
n=1

1

λn
(f, ϕn)

2
L2(M)

}
.

Also, for f, g ∈ Nψ the inner product has the representation

〈f, g〉Nψ =

∞∑
n=1

1

λn
(f, ϕn)L2(M)(g, ϕn)L2(M).

Along with the integral operator T come pseudodifferential operators T−r, r > 0,
defined formally by

T−rf(x) :=
∞∑
n=1

1

λrn
(f, ϕn)L2(M)ϕn(x).

The above proposition tells us that a function f resides in the native space if and
only if T−1/2f ∈ L2(M). Thus we expect functions such that T−1f ∈ L2(M) to be
at least twice as smooth. Below we show that these smoother functions enjoy faster
convergence rates.

Corollary 15. Let ψ, s, q, and μ be as in Theorem 11, and let f ∈ Nψ be such
that T−1f ∈ L2(M). Then we have

‖f − IXf‖Wμ
q (M) ≤ Ch

2s−μ−k(1/2−1/q)+
X,M ‖T−1f‖L2(M).

Proof. First, Lemma 10 gives us that

(5) ‖f − IXf‖Wμ
q (M) ≤ Ch

s−μ−k(1/2−1/q)+
X,M ‖f − IXf‖Hs(M).

The proof will be complete once we establish that

‖f − IXf‖Hs(M) ≤ ChsX,M‖T−1f‖L2(M).

We note that

‖f − IXf‖Hs(M) ≤ C‖f − IXf‖Nψ
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and recall that the error g := f − IXf and IXf are orthogonal in Nψ. Using this, the
above proposition, and a Cauchy–Schwarz inequality gives us

‖f − IXf‖2Nψ = 〈g, f〉Nψ =

∞∑
n=1

1

λn
(f, ϕn)L2(M)(g, ϕn)L2(M)

≤
( ∞∑
n=1

1

λ2n
(f, ϕn)

2
L2(M)

)1/2( ∞∑
n=1

(g, ϕn)
2
L2(M)

)1/2

= ‖T−1f‖L2(M)‖g‖L2(M).

Applying the zeros lemma to g gives us

‖g‖L2(M) ≤ ChsX,M‖g‖Nψ = ChsX,M‖f − IXf‖Nψ ,
which yields

‖f − IXf‖2Nψ ≤ ChsX,M‖T−1f‖L2(M)‖f − IXf‖Nψ ⇒ ‖f − IXf‖Nψ
≤ ChsX,M‖T−1f‖L2(M).

This along with (5) finishes the proof.
Now we shift our attention to functions less smooth than those in the native

space. Finding error estimates for functions outside the native space, sometimes
called escaping the native space, has only recently been made possible through the
use of band-limited functions, which are functions with compactly supported Fourier
transforms. Estimates for the escape when using RBFs restricted to the sphere were
given in [32], where the authors used tools intrinsic to the sphere. To deal with more
general manifolds, we will lift the problem from the manifold to Rd.

The results that lead to the escape can be quite deep; to be brief we merely list
the properties of the band-limited functions needed for our proof. For the interested
reader, more details and a complete reference list can be found in the survey paper [30].
The following are consequences of Theorem 3.4 in [35] and the remarks thereafter.

Proposition 16. Let ν > d/2, and let X be a finite subset of Rd. If f ∈ Hν(Rd),
then there is an fσ : Rd → R such that

1. fσ|X = f |X ,
2. the Fourier transform of fσ is supported within B(0, σ) with σ = C/qX,Rd ,
3. ‖f − fσ‖Hν(Rd) ≤ C‖f‖Hν(Rd),
4. ‖fσ‖ ≤ C‖f‖Hν(Rd),

where each C represents a constant independent of X and f .
As shown below, there is apparently a penalty paid for approximating a rough

function, given by the introduction of the mesh ratio, which we denote by ρX,M :=
hX,M/qX,M.

Theorem 17. Let M, ψ, s, and q be as above. Let β be such that s ≥ β > k/2,
and suppose μ ∈ N satisfies 0 ≤ μ ≤ �β−k(1/2−1/q)+�−1. Then there is a constant
hM such that if a finite node set X ⊂ M satisfies hX,M ≤ hM for all f ∈ Hβ(M) we
have

‖f − IXf‖Wμ
q (M) ≤ Ch

β−μ−k(1/2−1/q)+
X,M ρs−βX,M‖f‖Hβ(M).

Proof. We choose hM as before. If f ∈ Hβ(M), the trace theorem lets us contin-
uously extend f to Hν(Rd) via the map EM, where ν = β +(d− k)/2. Since β > k/2
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we have ν > d/2, thus allowing us to find a band-limited interpolant fσ to EMf with
the approximation properties listed in Proposition 16.

To get the appropriate orders of the mesh norm, we again use the zeros lemma
(Lemma 10) to get

‖f − IXf‖Wμ
q (M) ≤ Ch

β−μ−k(1/2−1/q)+
X,M ‖f − IXf‖Hβ(M).

The rest of the proof will follow after bounding ‖f − IXf‖Hβ(M). Note that since
TMfσ|X = f |X , we have

IXf = IXTMfσ.

Using this and the fact that all functions involved can be considered traces of function
on Rd gives us

‖f − IXf‖Hβ(M) ≤ ‖f − TMfσ‖Hβ(M) + ‖TMfσ − IXf‖Hβ(M)

= ‖TMEMf − TMfσ‖Hβ(M) + ‖TMfσ − IXTMfσ‖Hβ(M)

≤ C‖EMf − fσ‖Hν(Rd) + ‖TMfσ − IXTMfσ‖Hβ(M).

First we concentrate on the leftmost term on the right-hand side. We can use Propo-
sition 16 and the fact that f was continuously extended to get

‖EMf − fσ‖Hν(Rd) ≤ C‖EMf‖Hν(Rd) ≤ C‖f‖Hβ(M).

With bounding the other term in mind, note that since fσ is band-limited, we have
fσ ∈ Nφ, so its restriction to M is in Nψ = Hs(M). Now, we would like to apply
Corollary 13 with μ = β, but for fractional values of β, while in the corollary μ is
an integer. To get around this technical detail, we remark that in [49, Theorem 4.6]
the zeros estimate (Proposition 9 in the present paper) has been extended to include
fractional smoothness on the left-hand side, albeit for a more limited range of p, q
(1 < p, q <∞). Citing this work, we may apply the zeros estimate with p = q = 2 for
any μ such that 0 ≤ μ ≤ s, which in turn implies that in this case Corollary 13 also
holds for fractional values of β = μ. This gives us

‖TMfσ − IXTMfσ‖Hβ(M) ≤ Chs−βX,M‖TMfσ‖Hs(M).

The trace operator is continuous, so we have

‖TMfσ‖Hs(M) ≤ C‖fσ‖Hτ (Rd),

and the fact that fσ is band-limited with bandwidth σ ∼ 1/qX,Rd allows us to apply
a Bernstein inequality, giving us

‖TMfσ‖Hs(M) ≤ C‖fσ‖Hτ (Rd) ≤ Cqν−τ
X,Rd

‖fσ‖Hν(Rd)
≤ Cqν−τX,M‖fσ‖Hν(Rd) = Cqβ−sX,M‖fσ‖Hν(Rd),

where in the second to last inequality we have invoked Theorem 6. Continuing with
the estimate, Proposition 16, and the fact that f was continuously extended from M

to R
d gives us

‖fσ‖Hν(Rd) ≤ C‖EMf‖Hν(Rd) ≤ C‖f‖Hβ(M).
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(a) (b)

Fig. 1. Compact embedded smooth submanifolds used for the numerical experiments. (a) One-
dimensional curve M1 described parametrically by (6). (b) Two-dimensional torus M2 described
parametrically by (7). Solid spheres mark the locations of the near-minimum Reisz energy interpo-
lation nodes for (a) N = 100 and (b) N = 1000.

Stringing these inequalities together, we obtain

‖f − IXf‖Hβ(M) ≤ C‖f‖Hβ(M) + Chs−βX,M‖TMfσ‖Hs(M)

≤ C‖f‖Hβ(M) + Chs−βX,Mq
β−s
X,M‖f‖Hβ(M)

≤ Cρs−βX,M‖f‖Hβ(M).

This completes the proof.
If the nodes are chosen in a nonuniform way, we see that the error bound above

might be quite large. However, if the node sets one is dealing with are more or
less uniform, ρX,M can be bounded by a constant, and one would obtain the typical
approximation rates for target functions of a certain smoothness.

5. Numerical results. We provide numerical results verifying Theorems 11
and 17 for target functions inside and outside the native space, respectively. Two
different compact embedded smooth submanifolds in R3 are considered. The first is
a one-dimensional submanifold with the parametric representation

M1 =

{
(u, v, w) ∈ R

3

∣∣∣∣ u =

(
1 +

1

3
cos 6θ

)
cos θ, v =

(
1 +

1

3
cos 6θ

)
sin θ,(6)

w =
1

3
sin 2θ, 0 ≤ θ < 2π

}
.

This curve is displayed in Figure 1(a). The second submanifold is a two-dimensional
torus with parametric representation

M2 =

{
(u, v, w) ∈ R

3

∣∣∣∣ u =

(
1 +

1

3
cosλ

)
cos θ, v =

(
1 +

1

3
cosλ

)
sin θ,(7)

w =
1

3
sinλ, 0 ≤ θ, λ < 2π

}
.

This torus is displayed in Figure 1(b).
To discretize M1 and M2, we use a hierarchy of node sets with increasing cardinal-

ities. For M1 we use cardinalities of N = 50, 100, 200, 300, 400, and 500, while for M2
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we use N = 500, 750, 1000, 2000, 3000, and 4000. The node sets for both manifolds
are obtained by arranging the nodes so that their Reisz energy (with a power of 2)
is near minimal, as described in Hardin and Saff’s seminal article [21]. For M1, this
results in node sets with mesh norms hX,M1 that decrease like 1/N , while the mesh

norms hX,M2 for M2 decrease like 1/
√
N . Additionally, the mesh ratios ρX,M1 and

ρX,M2 remain roughly constant. The small solid spheres on the curve in Figure 1(a)
display the node locations for the N = 100 node set, while the small spheres on the
torus in Figure 1(b) display the N = 1000 node set. It is obvious from the latter plot
that the nodes are not oriented along any vertices or lines emphasizing the ability
of the proposed kernel interpolation technique to handle arbitrary node layouts on a
submanifold.

The positive definite kernel we use for constructing the interpolants in the exper-
iments is the Wendland function

(8) φ3,2(x, y) = φ3,2(‖x− y‖) = φ3,2(r) =
(
1− r

δ

)6

+

(
3 + 18

r

δ
+ 35

(r
δ

)2
)
,

which is positive definite in R3 and has four continuous derivatives [48, section 9.4].
Furthermore, the native space of this kernel is known to be H4(R3) [48, p. 157], which
means τ = 4 in Theorems 11 and 17. According to Theorem 5, the native spaces on
M1 and M2 for this kernel are thus H3(M1) and H

3.5(M2). The free parameter δ is
referred to as the support radius and its optimal value depends on numerous factors
which are neither easy nor obvious to determine (cf. [48, Chapter 15] or [22, Chapter
5]). Since our intention in the present study is only to provide verification of the error
estimates presented above, we set δ = 8/3 (the maximum distance of any two nodes
on either M1 or M2) for all the numerical results and leave investigations of selecting
δ for interpolation on submanifolds to a separate study.

One difficulty with verifying error estimates of the type given in Theorems 11 and
17 is coming up with explicit forms of target functions belonging to a desired Sobolev
space. Fortunately, Sobolev spaces can be defined in terms of decay rates of Fourier
transforms [48, p. 133]. Using this definition, a straightforward calculation shows any
function κ ∈ Rd whose Fourier transform satisfies

(9) κ̂(ξ) ∼ (1 + ‖ξ‖22)−ν

belongs to every Sobolev space Hβ(Rd) with β < 2ν−d/2. Thus, we can use functions
whose Fourier transforms satisfy (9) with ν = (β + d/2)/2 as target functions since
they will then be in Hs(M) for all s < β − (d− k)/2.

A well-known class of functions that satisfy (9) (with strict equality) are the
Matérn kernels [27] or Sobolev splines and are defined as

κν(x, y) = κν(‖x− y‖) = κν(r) =
21−(ν−d/2)

Γ(ν − d/2)
rν−d/2Kν−d/2(r), ν > d/2,

where Kν−d/2 corresponds to the K-Bessel function of order ν − d/2. To generate
interesting target functions for verifying Theorems 11 and 17, we use linear combi-
nations of these Matérn kernels as follows. Let X = {x1, x2, . . . , xm} be some set of
distinct points on the submanifold under consideration (either M1 or M2); then the
target function is given by

(10) fβ(x) =

m∑
j=1

cjκ 1
2 (β+d/2)

(‖x− xj‖).
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(a) (b)

Fig. 2. Visualization of two of the target functions for the numerical experiments. (a) The
target function (10) for M1 with m = 25 and β = 4 displayed as the height above the submanifold
(i.e., (u, v, w + f4(x))) together with colors indicating the values of the function. (b) The target
function for M2 with m = 100 and β = 4 with colors corresponding to the values of the target
function on the submanifold and black lines corresponding to contours of the function.

The coefficients c1, c2, . . . , cm are determined by requiring fβ to interpolate the fol-
lowing function at the points in X :

(11) p(x) =
1

8

(
u5 − 10u3v2 + 5uv4

) (
u2 + v2 − 60w2

)
,

where u, v, and w are the components of x. For M1, we use m = 25 quasi-minimum
Reisz energy points for X , while for M2 we use n = 100 quasi-minimum Reisz energy
points. Plots of the target function for β = 4 are displayed in Figures 2(a) and (b) for
M1 and M2, respectively. Note that fβ is not the kernel interpolant to be compared
against the theoretical error estimates; rather it is the form of the target functions to
be interpolated.

In the results below, the errors are measured by evaluating the kernel interpolants
and the target functions at a much denser set of points that sufficiently cover the man-
ifolds. For M1, P = 3000 evaluation points are used, while P = 24,300 points are
used for M2. We approximate the (relative) L2(M)-norms of the errors by approxi-
mating the surface integrals over the manifolds using a midpoint-type rule. We use
the following abuse of notation to denote the approximate L2(M)-norm:

‖f‖L2(M) :=

(∫
M

[f(x)]2dx

)1/2

≈
(

P∑
i=1

wi[f(xi)]
2

)1/2

:= ‖f‖2(M),

where {wi}Pi=1 are quadrature weights for the evaluation points {xi}Pi=1 on the mani-
fold. We also measure the max-norm errors over the manifolds. We use the standard
definition for this norm and denote it with the standard notation of �∞(M).

For the first numerical experiment, we set set β = 4 in (10) for M1 and M2.
Since the native space for the kernel (8) is H4(R3), we expect the estimates from
Theorem 11 to apply for these target functions. According to this theorem, the �2
errors for M1 and M2 should decrease like h3X,M1

and h3.5X,M2
, while the �∞ errors

should decrease like h2.5X,M1
and h2.5X,M2

. Figures 3(a) and (b) display the computed
relative errors versus the mesh norm for f4 together with the predicted estimates.
The figures show good agreement between the numerical and theoretical results.
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(a) M1, β = 4
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(b) M2, β = 4
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(c) M1, β = 3.5
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(d) M2, β = 3.5

Fig. 3. Relative errors in reconstructing the different target functions fβ in (10) on the two
different submanifolds with the kernel (8). Plots in (a) and (c) are for M1 and plots in (b) and (d)
are for M2. Lines marked with open circles in each figure correspond to the relative �2(M) error,
and lines marked with x’s are for the relative �∞(M) errors. In (a) and (b) the dashed and dashed-
dotted lines correspond to the predicted error estimates from Theorem 11 for �2(M) and �∞(M),
respectively, while these lines in (c) and (d) correspond to the predicted estimates from Theorem 17.

In the second experiment, we set β = 3.5 in (10) for M1 and M2, which makes
the target functions rougher than the native space of the kernel and which means the
estimates from Theorem 17 will apply. Assuming the mesh ratio is roughly constant
(which is true for our experiments), this theorem predicts that the �2 errors for M1

and M2 should decrease like h2.5X,M1
and h3X,M2

, while the �∞ errors should decrease like

h2X,M1
and h2X,M2

. Similar to the previous experiment, Figures 3(c) and (d) display
the computed relative errors for these target functions together with the predicted
estimates. Good agreement between the numerical and theoretical results is again
displayed.
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Fig. 4. Relative errors in reconstructing the target function (11) on (a) M1 and (b) M2 with
the kernel (8). The dashed lines in the figure correspond to the predicted error estimates for the
�2(M) error from Corollary 15.

As a final numerical experiment, we verify the “doubling” estimates from Corol-
lary 15. For the target function we use (11) directly. This function is C∞(R3) and
is thus much smoother than the native space of the kernel (8). According to Corol-
lary 15, the �2 errors for M1 and M2 should decrease like h6X,M1

and h7X,M2
for this

target function and kernel. Figures 4(a) and (b) display the results for M1 and M2,
respectively. We again find good agreement between the numerical and theoretical
results. The results from the figure also indicate that there does not appear to be a
reduction in the estimates for the �∞ error for this case.
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