893 research outputs found

    Learning-based Image Enhancement for Visual Odometry in Challenging HDR Environments

    Full text link
    One of the main open challenges in visual odometry (VO) is the robustness to difficult illumination conditions or high dynamic range (HDR) environments. The main difficulties in these situations come from both the limitations of the sensors and the inability to perform a successful tracking of interest points because of the bold assumptions in VO, such as brightness constancy. We address this problem from a deep learning perspective, for which we first fine-tune a Deep Neural Network (DNN) with the purpose of obtaining enhanced representations of the sequences for VO. Then, we demonstrate how the insertion of Long Short Term Memory (LSTM) allows us to obtain temporally consistent sequences, as the estimation depends on previous states. However, the use of very deep networks does not allow the insertion into a real-time VO framework; therefore, we also propose a Convolutional Neural Network (CNN) of reduced size capable of performing faster. Finally, we validate the enhanced representations by evaluating the sequences produced by the two architectures in several state-of-art VO algorithms, such as ORB-SLAM and DSO

    LDSO: Direct Sparse Odometry with Loop Closure

    Full text link
    In this paper we present an extension of Direct Sparse Odometry (DSO) to a monocular visual SLAM system with loop closure detection and pose-graph optimization (LDSO). As a direct technique, DSO can utilize any image pixel with sufficient intensity gradient, which makes it robust even in featureless areas. LDSO retains this robustness, while at the same time ensuring repeatability of some of these points by favoring corner features in the tracking frontend. This repeatability allows to reliably detect loop closure candidates with a conventional feature-based bag-of-words (BoW) approach. Loop closure candidates are verified geometrically and Sim(3) relative pose constraints are estimated by jointly minimizing 2D and 3D geometric error terms. These constraints are fused with a co-visibility graph of relative poses extracted from DSO's sliding window optimization. Our evaluation on publicly available datasets demonstrates that the modified point selection strategy retains the tracking accuracy and robustness, and the integrated pose-graph optimization significantly reduces the accumulated rotation-, translation- and scale-drift, resulting in an overall performance comparable to state-of-the-art feature-based systems, even without global bundle adjustment

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page
    corecore