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Abstract

This paper develops and evaluates methods for performing auto-retrieval

of a MAV using fast 6D relocalisation from visual features. Auto-retrieval

involves a combination of guided operation to direct the vehicle through

obstacles using a human pilot and autonomous operation to navigate the

vehicle on its return or during re-exploration. This approach is useful in

tasks such as industrial inspection and monitoring, and in particular to

operate indoors in GPS-denied environments. Our relocalisation method-

ology contrasts two sources of information: depth data and feature co-

visibility but in a novel manner that validates matches before a RANSAC

procedure. The result is the ability of performing 6D relocalisation at an

average of 50Hz on individual maps containing 120K features. The use of

feature co-visibility reduces memory footprint as well as removes the need

to employ depth data as used in previous work. This paper concludes

with an example of an industrial application involving visual monitoring

from a MAV aided by autonomous navigation.

1 Introduction

Auto-retrieval is a realistic and useful scenario where a Micro Aerial Vehicle
(MAV) is initially manually guided to a location or locations of interest by a
user and subsequently recalled to its starting point. The idea is that the vehicle
will autonomously negotiate its return based on the taught path. This is an
interesting mixture of supervised and unsupervised operation that is useful in
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Figure 1: The taught trajectory during a first exploration of a MAV (in white).
The repeated trajectory during re-exploration (in green) is estimated using visual
odometry with periodical calls to our fast 6D relocalisation, thus enabling drift
correction. A 3D reconstruction of the environment was also produced for this
flight using the camera pose estimates and depth information captured during
exploration.

tasks such as inspection and monitoring and which frees operators to concen-
trate on other tasks, once a safe path to reach a location of interest has been
established.

Although auto-retrieval is notionally simpler than fully autonomous explo-
ration, it still faces important challenges. Primarily, that of determining where
the vehicle is in 6D space accurately, at fast speed and robustly as well as being
able to relocalise in an already visited place, which is a well known problem in
SLAM. For instance, relocalisation may be used to recover from temporal loss
of tracking (e.g. in visual odometry), and used to correct drift in the estimation
(loop closure). On the other hand, if relocalisation is achievable at high frame
rate, it can be triggered alongside the normal visual tracking, which can help if
the vehicle starts to drift w.r.t. the taught path, thus enabling path correction
in earnest.

Motivated by the above, in this paper we develop and expand a relocalisation
methodology around the notion of 3D feature neighbourhoods as explained in
Sec 3. This not only enables fast operation, but it also allows the use of faster yet
more ambiguous binary descriptors. Our method starts from a real-time visual
odometry approach to collect a 3D map of visual features. In our estimates, the
error of this system is of less than 1% over trajectories of about 100 meters. The
generated trajectory provides spatial way points to be used for the auto-retrieval

2



task.
For fast relocalisation, our method exploits the 3D geometric information

recorded during the mapping to accelerate the search of 2D-3D matches, a
common bottle neck in full pose relocalisation, which is only aggravated by
ambiguous features. We use 3D neighbourhood information either provided by
a depth measurement (from an RGB-D sensor for instance), or by the spatial 3D
distribution of co-visible map points, which does not require a depth reading.
Our experiments indicate that the way in which we exploit these neighbourhoods
is effective for achieving good pose estimation in full 3D space as well as it is
fast enough for on-line control in our MAV application.

Fig. 1 shows an example of the algorithm working, with the taught path in
white and the repeated path in green, as a MAV explores a warehouse of about
14× 12 meters, with a traverse path of about 55 meters. The 3D reconstruction
of the scene is also performed in real time. The average distance in between the
taught and repeated path is of 50 cm.

This paper is organised as follows: section 2 discusses the state of the art re-
lated to our work; section 3 describes our fast visual relocalisation methodology;
section 4 briefly describes the two aerial platforms used in this work; section
5 presents the results of our experiments that aim to assess each one of the
components in our work, and finally in section 6 we discuss our final remarks.

2 Related Work

2.1 Visual Mapping from Micro Aerial Vehicles

There have been various recent works on visual mapping for MAVs. In most
cases, and in part due to the limited battery life, these works consider small
excursions but still constitute good examples of systems able to operate in GPS-
denied environments at low altitude.

Perhaps the simplest strategy to integrate vision on MAVs has been the
use of optic flow measurements based on the concept of motion parallax. These
approaches provide a temporary relative map between the vehicle and the world,
which is able to discern nearby and far away obstacles [1]. But the use of
optic flow is insufficient for long term trajectory estimation. As an alternative
approach, if known markers are available and located in the environment, these
can also provide a way to position the MAV relative to the environment [2]. For
more generic operation, a map-based approach that uses re-detectable natural
features is preferred.

In some cases, mapping frameworks based on bundle-adjustment SLAM such
as PTAM [3] have been used to showcase small space autonomous operation
over a few square meters, such as hovering and holding position with one of
the earliest examples being [4], other works include those of [5, 6]. Similar
frameworks have been used for multiple MAV exploration towards a textured
environment observed from a a few dozen meters away [6, 7], and using offline
3D reconstruction of the scene. Other approaches have combined stereo vision
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with Lidar scanning along the horizontal axis [8]; others have proposed to carry
out offline processing of the SLAM for a more accurate map generation [9].
Recently, in [10] it has been presented a semi-dense visual odometry system
running at 55 Hz onboard a MAV, which enables way-point-based autonomous
navigation.

All of the approaches mentioned before strongly motivate our work in aiming
for autonomously navigate in a GPS-denied environment by means of a visual
system running at high frame-rates. But in addition, our goal is to enhance
robust operation via fast visual relocalisation.

2.2 Visual Relocalisation

Since the randomised-trees-based solution presented in [11], more scalable ap-
proaches based on feature descriptors have been proposed. For instance, in
[12, 13] where hash tables are used as organisation model. In [3], sub-sampled
images of key frames and their poses are stored in a database and thus used to
recover from loss of tracking. More advanced approaches following the idea of
Bag of Words (BoW) have been proposed, for instance in [14, 15, 16].

Most approaches for relocalisation in MAVs use one of two strategies, either
keyframe-based [4, 5, 6] or using dense visual descriptors such as SIFT or SURF
[9, 17]. However, whatever approach is followed for relocalisation, if this involves
the use of dense descriptors to represent the observed scene, either BoW-like
histograms, or visual descriptors, then two possible drawbacks may be faced:
i) comparison of float-type vectors may become expensive in proportion to the
number of vectors to be compared against; ii) larger memory footprint may be
demanded to store such vectors for large maps. Both of these issues may affect
a platform with limited computational and storage budget.

2.3 Teach and Repeat

Our work shares similarities with the visual teach and repeat tasks on ground
vehicles [18, 19, 20]. Where a teach stage visual odometry is used to build
a data base of visual descriptors associated to 3D points. During the repeat
stage, visual odometry is used in combination with periodical relocalisation
calls in order to maintain a similar global path accuracy [18]. Recently, a basic
proof of concept for visual teach and repeat on a quadcopter has been presented
in [21]. However, all the heavy computation such as the visual mapping and
relocalisation are carried off board, in contrast to our approach where all the
processing is done on-board our vehicles.

3 Our 6D Relocalisation System

Our method follows two main components found in similar systems such as in
[22, 23, 24, 25]. These ideas are: (1) using binary descriptors for fast comparison
of descriptors and low memory foot print when stored in a database; (2) efficient
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organisation model of the database by utilising efficient hashing techniques, or
by using hierarchical trees. However, the main contribution in our approach is
the incorporation of 3D information, obtained via an RGB-D sensor or from the
map itself, within the relocalisation pipeline and how this is exploited in order
to accelerate the search for 2D-3D matches.

In summary, recovered binary features and their estimated 3D positions at
relocalisation time (2D-3D matches) are stored and retrieved from hash tables.
Our method then uses neighbourhood 3D information and performs pruning of
potential false positive matches, which occur very frenquently due to the use of
ambiguous (albeit fast) descriptors, leaving only a compact set of matches which
are deemed to be high quality. These are passed to a RANSAC procedure for
full pose estimation. The main advantage of using this approach is the reduction
in the number of RANSAC iterations, which greatly reduces the relocalisation
processing time.

3.1 Relocalisation Using Binary Descriptors

During the mapping stage, each mapped visual feature is associated to a binary
descriptor centred at the salient point where the visual feature was initialised.
We use ORB descriptors [26] with length of 512 bits. These are organised by
using a Locality-Sensitive-Hashing (LSH) technique [27], which enables us to
store descriptors in hash tables at almost no cost and with no restriction to
online increase of the database1. The 3D world position of the salient point
is available in the map and therefore can be attached to its binary descriptor.
This means that whenever a binary descriptor is retrieved from any of the hash
tables, we will have access to its 3D position as well.

Therefore, at relocalisation time, given a query image at some time step,
salient points in the image are extracted using the FAST corner detector [28].
For each salient point si the corresponding ORB descriptor bi is extracted.
Each binary descriptor bi is passed to the hash function, which simply takes
subsets of bits from the binary number in order to access to the corresponding
bins in the hash tables (where potential matches for bi exist). A linear nearest
neighbour search is performed with all the retrieved binary descriptors from the
bins searching for the descriptor that minimizes the Hamming distance with bi.

Let bim be the best match for bi and let pim be the 3D position of the
best binary match bim . Then a set of 2D-3D pairs is augmented as follows:
C = C∪ {(si,pim)} and if |C| > csize

2 then it is passed to the pose estimation
module, which is based on a three-point pose estimator plus RANSAC [29]. The
relocalisation is considered successful if the pose estimator finds a minimum set
of inliers in C such that these can be used to estimate a camera pose.

1Note that LSH is a simple but still powerful organisation model. Although any other or-
ganisation model could be used in our approach, our main point in this work is to demonstrate
the advantage of using 3D information for pruning of potential outlier matches.

2We carried out several experiments with different video sequences in order to empirically
choose a value for csize [24]. In this work, we use csize = 15, which offered a good trade-off
in terms of relocalisation percentage and processing time.
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(a) (b)

Figure 2: Ruling out spurious matches using the concept of 3D neighbourhood:
(a) after 2D-3D matches have been retrieved from the hash tables (a 2D position
on the query image has been coloured according to its corresponding 3D match),
a 3D neighbourhood centred around the 3D point in light green helps to identify
those 3D matches around it that fall inside and outside the neighbourhood,
suggesting that the light green match is likely to be an inlier as more 2D-3D
matches fall inside than outside; (b) when the neighbourhood is tested on the
magenta point we find out that none of the matches’ 3D positions fall inside,
hence, this match is likely to be a false positive.

3.2 Enhanced Relocalisation Using a 3D Neighbourhood

A known problem in the retrieval of 2D-3D matches with procedures like the
above, is that of retrieving false positives. This commonly is addressed with
a RANSAC-like procedure to identify inliers. However, a large number of
RANSAC iterations would be required, which ultimately consumes processing
time. Motivated by this, we have been investigating possible ways in which the
spurious outliers can be detected and removed from the set before such set is
sent to RANSAC. .

In this section we describe an algorithm based on the concept of 3D neigh-
bourhood of map points. The intuition behind this is that true positive 2D-3D
matches should be spatially close to each other in a 3D neighbourhood, and
although it may not be the general case, many false positive matches may fall
far away from such neighbourhood.

Fig. 2 illustrates the neighbourhood concept. After having retrieved a set of
putative 2D-3D matches, we can select the 3D position of one of those matches
which we can now refer to as a pivot. We then proceed to define a neighbourhood
around it within a set radius. This neighbourhood helps to identify how many
2D-3D matches fall inside such 3D area. This is an indication of whether the
pivot is likely to be an inlier or not. That is, if many matches fall inside this
region such matches are more likely to correspond to the same location and
hence the pivot is likely to be a true positive. This simple notion results in good
improvement in terms of both speed and accuracy of pose estimation.

We exploit the idea mentioned above in order to implement an algorithm
that monotonically attempts to construct a chain of quality matches. For this
purpose, similar to section 3.1, first we build a set M containing the retrieve set
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of 2D-3D matches. Then we initialise the quality set C with a match selected
(and removed) from M, this first match in C will be c1. Likewise, we select
another match mi ∈ M for which we set a radius ri and test whether the 3D
Euclidean distance in between c1 and mi, which we call di1, falls within this
radius (next section will explain how this radius may be set). If di1 is less than ri
then mi is added to C. For a second match mj in M , and its respective radius
rj , the test is repeated. This time two distances dj1 and dj2 are calculated
as C contains two elements. Thus, mj will be rejected if either dj1 > rj or
dj2 > rj since we want mj to be a match whose neighbourhood includes all
the accepted matches in C so far. This process continues by testing all the
remaining matches in M and, in the end, C will contain a set of matches whose
spatial 3D distribution is likely to correspond to inlier 2D-3D matches.

Note that the construction of C depends on the first element which ulti-
mately may lead to a small or null set. Therefore, a further improvement is
that of testing each putative match as the first element in C and see if a set
can be constructed. Thus, the set with the largest number of elements will be
selected as the final output set. This procedure is described in more detail in
Algorithm 1 of this paper. The following sections describe two specific manners
in which the neighbourhood radius rj can be tailored for each member mj ∈ M.

3.3 Using Depth Information to Define Neighbourhoods

We call this approach 3D test or 3DT in the results. It follows previous work
[24, 30] where we explored a particular case of the above algorithm that uses
depth information whenever available, for instance, from an RGB-D sensor.
Using a depth image, it is possible to estimate the 3D distance in between two
matches, and compare that to the distance in between the 3D map positions
associated to the matches. In essence, rj = dsjk + ǫd, where dsjk is the 3D
distance, calculated with the depth data from the sensor, in between a match
mj ∈ M and a match ck ∈ C, and ǫd is a depth error associated to the sensor.

This is a test of whether the 3D position of the matches falls within the same
neighbourhood, except that the neighbourhood can be defined by means of the
depth information. Our experience was two fold: (1) it is possible to quickly
prune likely false positive matches by using this 3D Test; (2) the surviving set
of matches are high quality matches from which it is likely to relocalise a valid
camera pose.

We should highlight that when using depth data, our approach is different
from other approaches where RGB-D imagery is used to relocalise the camera
pose, such as those in [31, 32] where depth data is used to build a model that
relates pixels to camera poses. In contrast, our approach is much simpler in the
sense that depth, or any available 3D neighbourhood information, is used to
assess the validity of a 2D-3D match, and such assessment is computationally
cheap given that only Euclidean distances are computed. Therefore in our
approach, 3D information is not used to describe the scene but to validate
the descriptors retrieved during the matching stage within the relocalisation
pipeline.
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(a) (b)

Figure 3: Covisible 3D points are used to defined the radius rj used in the
algorithm 1 of this work: (a) first, we calculate the mean µj and standard
deviation σj of the Euclidean distances in between co-visible 3D points and the
candidate 3D point to be stored in the database (green point); (b) top view
illustrating the use of the mean and standard deviation of the distances in order
to define a neighbourhood region around the candidate point.

3.4 Using Co-visibilitiy to Define the Neighbourhood

The above instantiation of the algorithm relies on depth data directly measured
from the RGB-D sensor and this, unfortunately, can be unavailable, for instance,
in outdoors or due to reflective or light-saturated regions. This motivated us to
consider alternative ways to define the neighbourhood radius, especially when
depth information is not available such as in monocular systems.

Here we explore the idea of using feature co-visibility in order to define
the neighbourhood radius. Two visual features are co-visible if these are being
observed in the same frame or number of frames, see Fig. 3. This relationship
is useful to guide a search where different combinations of features may arise,
however, most likely valid combinations are those where features are correlated
with each other, and co-visibility is a strong correlation. For instance, in [11]
only co-visible matches are used within the RANSAC procedure. In [33], co-
visible features are used to train the Conditional Random Field used for place
recognition. More recently, [34] constructs graphs of co-visible maps (where
features are co-visible) in order to estimate a location for a query image.

Any of the methods mentioned above implies the storage or production of
graph models or databases, where the co-visibility relationship is recorded. How-
ever, our aim is not to store every single co-visibility relationship, but to use
this information to tailor the radius rj for every binary descriptor mapped and
stored in the hash tables.

Therefore, during mapping, for a given visual feature j we calculate the 3D
Euclidean distances in between this and its co-visible features, this is, all the
visual features being tracked in the current frame, see Fig. 3a. This computation
is performed only when the system has decided that the visual feature is valid
and hence, worth it of being stored in the hash tables. This decision is based on
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the number of frames that the feature has been successfully observed/tracked.
In our system this number is set to be of at least 20 frames. In order to store
the feature and compute the required radius in an efficient way, we store and
do computations for only one features per frame, this takes 0.24ms in average.

From all these distances we compute the mean µj and its standard deviation
σj , thus, the corresponding neighbourhood radius is set to be rj = µj + 3σj ,
see Fig. 3b. Note that the constant 3 indicates that the radius rj will cover 99
% of the distribution of distances calculated from the co-visible features. For
further reference in the paper, this co-visibility test is named as CVT in the
results section.

4 Aerial Platforms

Flight testing was carried out using two different MAVs. Fig. 4a shows the first
aerial platform, a quadcopter with transversal dimensions of 66×66 cm, and an
integrated RGB-D sensor (ASUS Xtion Pro Live), with resolution of 320× 240
pixels, mounted underneath its base. A dedicated vision processor was used
on-board this platform to run our visual odometry and relocalisation methods.
This processor is a board computer with Intel Core2Duo 2.16GHz processor and
2GB RAM.

Fig. 4b shows the second platform, a hexacopter, with dimensions of 118×
118 cm. On this platform, an Odroid U2 computer, with ARM QuadCore
1.7GHz processor and 2GB RAM, was used to run the vision algorithms. The
vehicle also carries two cameras: an RGB camera with resolution of 1920×1088
pixels, this camera is used for visual monitoring of the scene and we will refer
to this as the monitoring camera; the second camera is a stereo camera used for
the visual odometry and relocalisation algorithms. Both cameras are located in
front of the vehicle, with the stereo rig having an inclination of 15 degrees and
being located underneath the RGB camera. The stereo camera was built with
two USB cameras IDS UI-1221LE-C-HQ with resolution of 376× 240 pixels.

In both platforms, a miniature flight controller (Blue Bear’s SNAP autopi-
lot running on a second dedicated board) was used for manual flight and au-
tonomous navigation. All processing was carried out in real time on board
the vehicle, with state estimates from the visual navigation module sent to the
autopilot for input into flight control algorithms. High-rate IMU and compass
heading data was used to stabilise the vehicle attitude, with data from the visual
navigation used to control the platform position.

5 Experiments

For each of the experiments in this section our first step is to build a map of 3D
points by using a visual odometry system similar to that in [35]. Salient points
are detected using FAST (we used up to 1000 points) and template patches
are used for feature tracking, but for every initialised feature we extracted its
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(a) (b)

Figure 4: The two aerial vehicles used in this work: (a) quadcopter with an
RGB-D camera attached underneath its base, this platform was used to test
the auto-retrieval concept; (b) hexacopter platform used in our visual moni-
toring application, with a monitoring camera on the top and a stereo camera
underneath,

binary descriptor and stored it in the hash tables. Features were initialised with
an inverse depth parametrization [36] but the depth obtained from an RGB-D
sensor (ASUS X-tion pro live) as initial state, which led to fast convergence.
In a similar manner, for our visual monitoring application and as commented
before in section 4, features are initialised with the depth estimated with our
sparse stereo system. In either case, we use 8 hash tables for our database of
binary descriptors. The mean and standard deviation of 3D distances between
co-visible mapped features are estimated during this mapping stage 3.

5.1 Fast 6D Visual Relocalisation

We investigated the potential of using the 3D neighbourhood test in a scenario
containing a mixture of challenging conditions such as poor texture, change of
light conditions and scarce depth information. A first video sequence of the
scene, containing 6704 RGB-D images with resolution of 320× 240 captured at
30Hz, was used to build the 3D map. The trajectory followed by the camera
is shown in black in figure 5, the camera travelled 215 metres, moving forward
at a speed of 1 meter per second. A map of approximately 120,000 descriptors
was built and stored in the hash tables.

A second video sequence of 3220 images was utilised to test the different
configurations of the 6D relocalisation framework used in this work, hence, the
relocalisation is tested on every single frame of the sequence. In this sequence,
the camera followed the same trajectory as in the first sequence but at a speed
of about 2 metres per second. These experiments were run in an Intel i5 Core
2.4GHz processor with 4GB in RAM.

We assessed four configurations of the 6D relocalisation frame work:

3A video of the real-time experiments presented in this section can be found at:
http://youtu.be/5uSEDmMH4rg
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• BD: Best 2D-3D matches are retrieved from hash tables and then the
three-point pose plus RANSAC is used for 6D pose estimation.

• BD+3DT: Best 2D-3D matches are retrieved from hash tables, then the
neighbourhood test is applied, where the neighbourhood radius rj is set
with the help of the depth dsjk, obtained from the depth sensor, and the
depth error ǫd.

• BD+AT: We set an arbitrary value to the neighbourhood radius rj .

• BD+CVT: For every jth feature stored in the hash tables, the radius
rj is set with mean µj and the standard deviation σj obtained from its
co-visible mapped features as explained in section 3.4.

From our previous work in [30, 24] we have experimentally set the following
values: (1) within the RANSAC procedure, a match is accepted as inlier if the
pixel difference in between the pixel coordinate, where the match was found, and
the projection pixel coordinate of the corresponding 3D point is of less than 2
pixels; (2) regarding rj for BD+3DT, the depth error was set to be ǫd = 20cm.

Table 1 shows the results obtained for each of the above configurations.
For this kind of framework, the error in the relocalised pose is usually within
centimetres [30], however, from time to time a pose falls far away from the true
pose. Such poses are not considered as relocalised, therefore, the percentage
of relocalisation includes only those poses within an error of +/-25 cm. The
table shows the number of inliers set for each configuration as much as the
number of RANSAC iterations. These values were the ones that produced the
best results for each configuration. Note that for BD, the number of minimum
inliers and the RANSAC iterations is higher than those of the other methods,
but unfortunately using lower values for BD in RANSAC showed very noisy
output with several incorrect relocalised camera poses.

Results from table 1 indicate that the 3D neighbourhood test, in any of its
variants, enhances the baseline system, not only by increasing the relocalisation
percentage, but also by reducing the computational time. Note that for the
three configurations of the test the processing time is about 0.2ms (indicated
as NB Test in the table). Additionally, for these configurations less RANSAC
iterations are used since we assumed that RANSAC will receive a set of quality
matches from the test. However, we should mention that the relocalisation
percentage for BD+3DT is not as good as in previous experiments where we
have obtained around 70% of relocalisation [30, 24]. This is mostly due to the
poor quality of depth information in several sections of the sequence (see figure
5).

In contrast,BD+AT, where we set the radius rj = 5 metres, produced much
better results than when using depth (BD+3DT). We should say that for this
scene this radius was very adequate, however, we have tested the same thresh-
old in other sequences and the relocalisation percentage drops, meaning that we
should adapt this threshold according to the spatial distribution of the scene.
On the other hand, without having to manually set any threshold, BD+CVT
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Figure 5: Left image: top view where the visual odometry trajectory is shown
in black, the relocalised camera poses obtained with the BD+CVT configu-
ration have been overlaid in green. Right image: we noted that BD+3DT

(second row) fails to relocalise even when apparently there seems to be enough
depth data (first row), however, the images lack texture and the depth data of
those places where saliency exists is either null or of poor quality. In contrast,
BD+CVT overcomes these problems in each one of these examples (third row)
since the method no longer depends on the use of depth data in order to con-
struct a set of quality matches; the blue lines indicate the set of matches found
by the method, detected inliers are set in green, whilst outliers are in red.

outperforms any of the other methods, implying that the neighbourhood radius
set by the co-visibility statistics produces a better set of quality matches. The
relocalised camera poses for this method are shown in Fig. 5, note that the
system manages to achieve 51% of relocalisation. We deem this to be an ac-
ceptable outcome since the relocalised poses cover almost all of the traversed
space. We also observed that many of the places where the method failed to
relocalised were those with very low texture or strong change in light conditions.
A different feature would be interesting to investigate here.

5.2 Auto-Retrieval Flight

The auto-retrieval concept enables the demonstration of closed loop flight con-
trol independent of path-planning and exploration aspects required for com-
pletely autonomous flight. It incorporates manual exploration, in which visual
odometry is used for 6D pose estimation, followed by automatic return of the
vehicle back to its starting point. In both stages, our fast relocalisation frame-
work is utilised. Our visual odometry during both modes, manual flying and
auto-retrieval, ran at 20 Hz.

On the teach mode, relocalisation is only triggered if tracking fails, however,
for the repeat mode, our strategy exploits the fact that the vehicle is expected to
repeat the taught trajectory by periodically triggering relocalisation (every 200
frames), which has the effect of reducing drift in the estimated trajectory and
keeping the return flight path close to the original one. For this auto-retrieval
concept, the platform travels backwards to allow it to re-observe the scene.

During the repeat mode, any relocalised pose beyond a threshold is consid-
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ered spurious or false positive and hence ignored as if the system has not man-
aged to relocalise. On the other hand, in the event of a false negative outcome,
this is, the relocalisation failed to recover a valid pose, the visual odometry sim-
ply will continue operating, however, the relocalisation will be attempted again
in the next available frame.

Under manual exploration mode the flight controller stabilises vehicle atti-
tude and responds to attitude (pitch/roll), yaw rate and throttle demands from
the pilot. During exploration mode the outputs from the visual odometry are
logged at 4Hz, effectively generating a series of closely-spaced way points to be
followed during auto-retrieval. When the system switches to autonomous mode
the position controller commands the vehicle to return along the original flight
path, visiting the sequence of recorded way points in reverse order using the
estimates from our combined pose estimation approach for platform position.

We report results of three representative auto-retrieval runs. In all the runs
the vehicle’s start position is with the camera looking at the left wall in the
venue. After taking off, the pilot commands the vehicle to perform a 90o rotation
to the right. After the rotation, the vehicle follows whatever trajectory the pilot
commands, with the camera always pointing forward. At some point of the
manual flight, the pilot pushes a button to activate the auto-retrieval mode. In
this mode, the vehicle attempts a return flight trying to follow the path traversed
during the manual flight. As mentioned before, the auto-retrieval uses the pose
estimation obtained from our combined approach in order to autonomously
direct its position towards the next way point. When the vehicle has reached
the last way point, it correctly performs a −90o rotation, which is an indication
of the vehicle arriving at the starting point, after this, for safety reasons, the
pilot takes over and lands the vehicle manually.

Fig. 6a-c show the vehicle’s trajectory (camera pose estimates) for each one
of the runs in a top view only. However, our goal is to observe that the vehicle
repeats the same taught path, thus returning to the starting point. The taught
trajectory estimated by the visual odometry system is depicted in red. In the
same figure, the estimated vehicle’s position during auto-retrieval (repeat) is
depicted in green.

5.3 Visual Monitoring Application

We developed a demonstrator application supported by the auto-retrieval con-
cept. For this we used the vehicle with the stereo sensor, however, stereo match-
ing was called occasionally to calculate sparse triangulation of image corre-
spondences. These correspondences were obtained through ORB-based feature
matching. ORB features were extracted only on salient points detected with
the FAST corner detector.

Sporadic stereo matching was run in a separate thread at an average of 5
Hz. In this sense, the visual odometry and the relocalisation algorithms pro-
cessed images acquired with the left camera only, thus performing effectively as
a monocular system for most of the time as stereo is only used when features
are initialised, hence, we used the co-visibility method for relocalisation. Re-
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(a) (b)

(c) (d)

Figure 6: Top view of the vehicle’s pose estimates obtained during manual fight
(teach) and repeat mode: in (a-c) results related to the auto-retrieval concept;
(d) results related to the visual monitoring application, note that the vehicle
travelled a total of 70 metres. The average distance in between the taught and
repeated trajectories is also indicated for each run.

localisation was called every 200 frames. We optimized our visual algorithms
substantially for the Odroid, and we were able to work at an average of 40 Hz.

Before testing our visual monitoring application, two video sequences of the
target scenario were recorded using the stereo camera on board the hexacopter.
For both video sequences, the vehicle was manually flown following the expected
trajectory for the teach and repeat mode, about 12K images were recorded for
each sequence. The first sequence was used to create a map of about 16.5K
descriptors. The second sequence was used to test our relocalisation for every
frame using this map. We ran this experiment on the same i5 processor used
in the experiments of section 5.1. A relocalisation of 73% was obtained with an
average frame rate of 55Hz.

For the application, in the teach mode the MAV is flown by a pilot following a
specific trajectory. At the outset, the vehicle is placed with the cameras facing
the wall to be monitored. After taking off, the pilot controls the vehicle so
that it moves sideways following a trajectory parallel to the wall, then a turn is
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images display on the GCS from the monitoring camera during the repeat mode.

Amplified images corresponding to those shown in the red rectangle.

Figure 7: Snapshots illustrating the outcome of our visual monitoring applica-
tion during the repeat mode. The first row shows the monitoring camera video
displayed on the GCS where the inset images in the red rectangle correspond
to the retrieved images saved during the teach mode.

performed to face the next perpendicular wall and it continues with the sideways
fly. A Ground Control Station (GCS) running on a laptop is available for the
pilot to observe a top view of the vehicle’s position and the live video from the
monitoring RGB camera, which is transmitted via telemetry. The pilot serves
as an expert to indicate locations of interest, which are recorded by a press
of a button. This results in images being captured by the monitoring camera
with their corresponding vehicle’s position. A set of way points describing the
trajectory is also stored.

In the repeat mode, the vehicle is placed on the same starting position as
in the teach mode. The pilot is in control during taking off, however, once
on the air, the pilot switches to autonomous navigation after which (similar to
the auto-retrieval task) the vehicle flies autonomously aiming at repeating the
taught path. During the autonomous flight, the vehicle’s position is used to
retrieve the stored images from the monitoring camera from the teach flight.
The system automatically retrieves images whose recorded (vehicle’s) position
is within a radius of 3 metres w.r.t. the current vehicle’s position. The image
with the actual closest position is displayed as an inset image on the display
showing the live video from the monitoring camera, see Fig. 7. The idea is that
the user of the ground station can compare images from the taught and the
latest observed images for an area, perhaps to identify changes on the scene.
The estimated paths followed by the vehicle are shown in Fig. 6d.

6 Conclusions

In this work we have shown that, by using fast binary descriptors together with
an efficient relocalisation methodology, it is possible to develop real-time on-
board autonomous operation of micro air vehicles in tasks such as navigation
and auto-retrieval.

We have also presented an extension of a validation test for ruling out false
positive matches and based on the concept of 3D neighbourhood, however, this
extension removes the need for depth data which was a key component in our
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previous work. In this context, we have introduced a simple, yet powerful and
efficient way of using 3D spatial information of co-visible features in order to
define such neighbourhoods. Results indicate that the co-visible information
leverages the performance of our relocalisation system whilst maintaining the
high frame rate with an average of 50Hz on an i5 processor.

The complete system has been effectively tested on two different MAVs,
one used to demonstrate the auto-retrieval concept, and another for a simple
visual monitoring application. Given the processing limitations of the computers
on board, it is expected for our relocalisation method to run slower, however,
the speed is reduced by a half only, which was good enough to maintain a
performance of 20Hz on the quadcopter, and 40Hz on the hexacopter, during
the repeat mode.

In our future work we are aiming at testing our system during longer flights
and outdoors.
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Algorithm 1: 2D-3D matching using 3D Neighbourhood Test

INPUT: I // Query Image

HT // Hash Tables

OUTPUT: C // Largest set of 2D-3D quality matches

\\ Step 1: Retrieve 2D-3D Matches

1 S = extract salient points(I)
2 M = [ ] // Initial set of 2D-3D matches

3 for each si ∈ S do // For each salient point

4 bi = retrieve best binary descriptor(HT)
5 pi = get descriptor 3D position(bi)
6 M = M ∪ {(si, pi)}// Add 2D-3D match

7 end

\\ Step 2: Construct set of quality matches

8 C = [ ]
9 for each mi ∈ M do

10 M = M− {mi}
11 Ctest = {mi}
12 for each mj ∈ M do

13 rj = neighbourhood radius(mj)
14 is consistent match = true

15 for each ck ∈ Ctestdo

16 djk = 3D euclid dist(mj , ck)
17 if djk > rj then // Neighbourhood check

18 is consistent match = false

19 break

20 end if

21 end for

22 if is consistent match then

23 Ctest = Ctest ∪ {mj}
24 end if

25 end for

26 if |Ctest| > |C| then
27 C = Ctest

28 end if

29 end for

\\ Pose estimation using three-point-pose+RANSAC will use C

30 return C
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Table 1: Mean results of continuous relocalisation using ORB binary descriptors
of 512 bits and 8 hash tables.

Min. # # Iter. Processing Time [ ms ] Reloc.

Configuration Inliers for FAST Binary NB RANSAC TOTAL

RANSAC Match Test [ % ]

BD 12 860 0.97 15.25 0 34.52 50.7 ± 16.6 11.5

BD+3DT 6 100 0.88 14.96 0.23 2.25 18.3 ± 6.1 26.5

BD+AT 6 100 0.88 14.14 0.20 2.51 17.7 ± 6.1 47.9

BD+CVT 6 100 0.95 14.68 0.21 2.8 18.6 ± 7.3 51.7
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