2,536 research outputs found

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Distributed Energy Trading: The Multiple-Microgrid Case

    Full text link
    In this paper, a distributed convex optimization framework is developed for energy trading between islanded microgrids. More specifically, the problem consists of several islanded microgrids that exchange energy flows by means of an arbitrary topology. Due to scalability issues and in order to safeguard local information on cost functions, a subgradient-based cost minimization algorithm is proposed that converges to the optimal solution in a practical number of iterations and with a limited communication overhead. Furthermore, this approach allows for a very intuitive economics interpretation that explains the algorithm iterations in terms of "supply--demand model" and "market clearing". Numerical results are given in terms of convergence rate of the algorithm and attained costs for different network topologies.Comment: 24 pages, 8 figures; new version answering reviewers' comments; the paper is now accepted for publication in the IEEE Transactions on Industrial Electronics; the paper is now publishe

    Microgrids: Legal and Regulatory Hurdles for a More Resilient Energy Infrastructure

    Get PDF
    Natural disasters and climate change have made it apparent that energy infrastructure needs to be modernized and microgrids are one type of technology that can help the electricity grid become more resilient, reliable, and efficient. Different states have begun developing microgrid pilot projects including California, New York, Connecticut, and Pennsylvania. The City of Pittsburgh, Pennsylvania is the first city to propose implementing “energy districts” of microgrids that will serve as critical infrastructure, in the first phase, and then expand to commercial and community settings. This large project involves many shareholders including public utilities, government agencies, and private entities. Utilizing microgrids on such a large scale raises issues regarding its classification, as energy generation or energy storage, and whether it should be regulated by public utilities, private entities, or municipalities. In a state like Pennsylvania where the energy market has been deregulated, there is strong concern on what the public utilities involvement will be with microgrid projects. This Note focuses on the regulatory issues that are raised with the construction and operation of microgrids at such a large scale in Pittsburgh. It addresses the difficulties that arise when implementing microgrids in a deregulated energy market state such as Pennsylvania, where little to no statutory language exists regarding microgrids. It will give an overview of proposed Pennsylvania legislation that may impact a public utilities’ control over microgrid technology and the benefits and costs when examining the extent of the public utilities’ role regarding ownership and control of microgrids in a deregulated energy market

    Market and Economic Modelling of the Intelligent Grid: 1st Interim Report 2009

    Get PDF
    The overall goal of Project 2 has been to provide a comprehensive understanding of the impacts of distributed energy (DG) on the Australian Electricity System. The research team at the UQ Energy Economics and Management Group (EEMG) has constructed a variety of sophisticated models to analyse the various impacts of significant increases in DG. These models stress that the spatial configuration of the grid really matters - this has tended to be neglected in economic discussions of the costs of DG relative to conventional, centralized power generation. The modelling also makes it clear that efficient storage systems will often be critical in solving transient stability problems on the grid as we move to the greater provision of renewable DG. We show that DG can help to defer of transmission investments in certain conditions. The existing grid structure was constructed with different priorities in mind and we show that its replacement can come at a prohibitive cost unless the capability of the local grid to accommodate DG is assessed very carefully.Distributed Generation. Energy Economics, Electricity Markets, Renewable Energy
    • 

    corecore