6 research outputs found

    Reliable material characterisation at low x-ray energy through the phase-attenuation duality

    Get PDF
    We present a comparison of between two polychromatic X-ray imaging techniques used to characterise materials: dual energy (DE) attenuation and phase-attenuation (PA), the latter being implemented via a scanning-based Edge Illumination system. The system-independent method to extract electron density and effective atomic number developed by S.G. Azevedo et al IEEE Transactions on nuclear science, Vol. 63, 341 (2016) - SIRZ - is employed for the analysis of planar images, with the same methodology being used for both approaches. We show PA to be more reliable at low energy X-ray spectra (40 kVp), where conventional DE breaks down due to insufficient separation of the energies used in measurements, and to produce results comparable with “standard” DE implemented at high energy (120 kVp), therefore offering a valuable alternative in applications where the use of high x-ray energy is impractical

    PEPI Lab: a flexible compact multi-modal setup for X-ray phase-contrast and spectral imaging

    Get PDF
    This paper presents a new flexible compact multi-modal imaging setup referred to as PEPI (Photon-counting Edge-illumination Phase-contrast imaging) Lab, which is based on the edge-illumination (EI) technique and a chromatic detector. The system enables both X-ray phase-contrast (XPCI) and spectral (XSI) imaging of samples on the centimeter scale. This work conceptually follows all the stages in its realization, from the design to the first imaging results. The setup can be operated in four different modes, i.e. photon-counting/conventional, spectral, double-mask EI, and single-mask EI, whereby the switch to any modality is fast, software controlled, and does not require any hardware modification or lengthy re-alignment procedures. The system specifications, ranging from the X-ray tube features to the mask material and aspect ratio, have been quantitatively studied and optimized through a dedicated Geant4 simulation platform, guiding the choice of the instrumentation. The realization of the imaging setup, both in terms of hardware and control software, is detailed and discussed with a focus on practical/experimental aspects. Flexibility and compactness (66 cm source-to-detector distance in EI) are ensured by dedicated motion stages, whereas spectral capabilities are enabled by the Pixirad-1/Pixie-III detector in combination with a tungsten anode X-ray source operating in the range 40-100 kVp. The stability of the system, when operated in EI, has been verified, and drifts leading to mask misalignment of less than 1 [Formula: see text]m have been measured over a period of 54 h. The first imaging results, one for each modality, demonstrate that the system fulfills its design requirements. Specifically, XSI tomographic images of an iodine-based phantom demonstrate the system's quantitativeness and sensibility to concentrations in the order of a few mg/ml. Planar XPCI images of a carpenter bee specimen, both in single and double-mask modes, demonstrate that refraction sensitivity (below 0.6 [Formula: see text]rad in double-mask mode) is comparable with other XPCI systems based on microfocus sources. Phase CT capabilities have also been tested on a dedicated plastic phantom, where the phase channel yielded a 15-fold higher signal-to-noise ratio with respect to attenuation

    Direct quantitative material decomposition employing grating-based X-ray phase-contrast CT

    No full text
    Abstract Dual-energy CT has opened up a new level of quantitative X-ray imaging for many diagnostic applications. The energy dependence of the X-ray attenuation is the key to quantitative material decomposition of the volume under investigation. This material decomposition allows the calculation of virtual native images in contrast enhanced angiography, virtual monoenergetic images for beam-hardening artifact reduction and quantitative material maps, among others. These visualizations have been proven beneficial for various diagnostic questions. Here, we demonstrate a new method of ‘virtual dual-energy CT’ employing grating-based phase-contrast for quantitative material decomposition. Analogue to the measurement at two different energies, the applied phase-contrast measurement approach yields dual information in form of a phase-shift and an attenuation image. Based on these two image channels, all known dual-energy applications can be demonstrated with our technique. While still in a preclinical state, the method features the important advantages of direct access to the electron density via the phase image, simultaneous availability of the conventional attenuation image at the full energy spectrum and therefore inherently registered image channels. The transfer of this signal extraction approach to phase-contrast data multiplies the diagnostic information gained within a single CT acquisition. The method is demonstrated with a phantom consisting of exemplary solid and fluid materials as well as a chicken heart with an iodine filled tube simulating a vessel. For this first demonstration all measurements have been conducted at a compact laser-undulator synchrotron X-ray source with a tunable X-ray energy and a narrow spectral bandwidth, to validate the quantitativeness of the processing approach
    corecore