4,753 research outputs found

    Using Compressed Audio-visual Words for Multi-modal Scene Classification

    Get PDF
    We present a novel approach to scene classification using combined audio signal and video image features and compare this methodology to scene classification results using each modality in isolation. Each modality is represented using summary features, namely Mel-frequency Cepstral Coefficients (audio) and Scale Invariant Feature Transform (SIFT) (video) within a multi-resolution bag-of-features model. Uniquely, we extend the classical bag-of-words approach over both audio and video feature spaces, whereby we introduce the concept of compressive sensing as a novel methodology for multi-modal fusion via audio-visual feature dimensionality reduction. We perform evaluation over a range of environments showing performance that is both comparable to the state of the art (86%, over ten scene classes) and invariant to a ten-fold dimensionality reduction within the audio-visual feature space using our compressive representation approach

    Masking Strategies for Image Manifolds

    Full text link
    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the data-dependent masking process, even for modest mask sizes

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic
    • …
    corecore