582 research outputs found

    Exploring and defining the cellular diversity of the brain across species

    Get PDF
    Single-cell technologies have created a new taxonomic challenge: to create a shared language for defining individual cells within complex organisms. In this work, I complicate the taxonomic task by developing a novel assay that captures spatially resolved single-cell chromatin accessibility and also explore and define epigenomic cell states in the mouse and human brains

    SciTech News [full issue]

    Get PDF

    Development and Application of Chemometric Methods for Modelling Metabolic Spectral Profiles

    No full text
    The interpretation of metabolic information is crucial to understanding the functioning of a biological system. Latent information about the metabolic state of a sample can be acquired using analytical chemistry methods, which generate spectroscopic profiles. Thus, nuclear magnetic resonance spectroscopy and mass spectrometry techniques can be employed to generate vast amounts of highly complex data on the metabolic content of biofluids and tissue, and this thesis discusses ways to process, analyse and interpret these data successfully. The evaluation of J -resolved spectroscopy in magnetic resonance profiling and the statistical techniques required to extract maximum information from the projections of these spectra are studied. In particular, data processing is evaluated, and correlation and regression methods are investigated with respect to enhanced model interpretation and biomarker identification. Additionally, it is shown that non-linearities in metabonomic data can be effectively modelled with kernel-based orthogonal partial least squares, for which an automated optimisation of the kernel parameter with nested cross-validation is implemented. The interpretation of orthogonal variation and predictive ability enabled by this approach are demonstrated in regression and classification models for applications in toxicology and parasitology. Finally, the vast amount of data generated with mass spectrometry imaging is investigated in terms of data processing, and the benefits of applying multivariate techniques to these data are illustrated, especially in terms of interpretation and visualisation using colour-coding of images. The advantages of methods such as principal component analysis, self-organising maps and manifold learning over univariate analysis are highlighted. This body of work therefore demonstrates new means of increasing the amount of biochemical information that can be obtained from a given set of samples in biological applications using spectral profiling. Various analytical and statistical methods are investigated and illustrated with applications drawn from diverse biomedical areas

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    PCA-Based on Feature Extraction and Compressed Sensing for Dimensionality Reduction

    Get PDF
    Compressive sensing reduces the number of samples required to achieve acceptable reconstruction for medical diagnostics, therefore this research will implement dimensional reduction algorithms through compressed sensing for electrocardiogram signals (EKG). dimensional reduction is performed based on the fact that ECG signals can be reconstructed with linear combination coefficients with a bumpy base of small measurements with high accuracy. This study will use PCA for feature extraction on ECG signals. The data used are the ECG patient records on the website page www.physionet.org as many as 1200 with each attribute as many as 256 attributes. The total data dimension used is 1200x256, which means the data has 1200 rows and has as many as 256 columns. To show the accuracy of the dimensional reduction result, so it is performed classification on data using KNN and Naive Bayes. The classification results show that KKN can classify well with 84,02% accuracy rate and the Naive Bayes accuracy is 65,78%. for 100 dimensions The conclusion is those dimensional reductions for ECG data that have large dimensions, it still able to provide valid information like it uses the original data. Principle Component Analysis is a good method for reducing data dimensions by selecting certain features, so the dimensions of the data become smaller but still able to provide good accuracy to the reader

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance
    corecore