14 research outputs found

    High Performance Computing Techniques to Better Understand Protein Conformational Space

    Get PDF
    This thesis presents an amalgamation of high performance computing techniques to get better insight into protein molecular dynamics. Key aspects of protein function and dynamics can be learned from their conformational space. Datasets that represent the complex nuances of a protein molecule are high dimensional. Efficient dimensionality reduction becomes indispensable for the analysis of such exorbitant datasets. Dimensionality reduction forms a formidable portion of this work and its application has been explored for other datasets as well. It begins with the parallelization of a known non-liner feature reduction algorithm called Isomap. The code for the algorithm was re-written in C with portions of it parallelized using OpenMP. Next, a novel data instance reduction method was devised which evaluates the information content offered by each data point, which ultimately helps in truncation of the dataset with much fewer data points to evaluate. Once a framework has been established to reduce the number of variables representing a dataset, the work is extended to explore algebraic topology techniques to extract meaningful information from these datasets. This step is the one that helps in sampling the conformations of interest of a protein molecule. The method employs the notion of hierarchical clustering to identify classes within a molecule, thereafter, algebraic topology is used to analyze these classes. Finally, the work is concluded by presenting an approach to solve the open problem of protein folding. A Monte-Carlo based tree search algorithm is put forth to simulate the pathway that a certain protein conformation undertakes to reach another conformation. The dissertation, in its entirety, offers solutions to a few problems that hinder the progress of solution for the vast problem of understanding protein dynamics. The motion of a protein molecule is guided by changes in its energy profile. In this course the molecule gradually slips from one energy class to another. Structurally, this switch is transient spanning over milliseconds or less and hence is difficult to be captured solely by the work in wet laboratories

    A primer on correlation-based dimension reduction methods for multi-omics analysis

    Full text link
    The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will guide researchers navigate the emerging methods for multi-omics and help them integrate diverse omic datasets appropriately and embrace the opportunity of population multi-omics.Comment: 30 pages, 2 figures, 6 table

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Sparse multivariate models for pattern detection in high-dimensional biological data

    No full text
    Recent advances in technology have made it possible and affordable to collect biological data of unprecedented size and complexity. While analysing such data, traditional statistical methods and machine learning algorithms suffer from the curse of dimensionality. Parsimonious models, which may refer to parsimony in model structure and/or model parameters, have been shown to improve both biological interpretability of the model and the generalisability to new data. In this thesis we are concerned with model selection in both supervised and unsupervised learning tasks. For supervised learnings, we propose a new penalty called graphguided group lasso (GGGL) and employ this penalty in penalised linear regressions. GGGL is able to integrate prior structured information with data mining, where variables sharing similar biological functions are collected into groups and the pairwise relatedness between groups are organised into a network. Such prior information will guide the selection of variables that are predictive to a univariate response, so that the model selects variable groups that are close in the network and important variables within the selected groups. We then generalise the idea of incorporating network-structured prior knowledge to association studies consisting of multivariate predictors and multivariate responses and propose the network-driven sparse reduced-rank regression (NsRRR). In NsRRR, pairwise relatedness between predictors and between responses are represented by two networks, and the model identifies associations between a subnetwork of predictors and a subnetwork of responses such that both subnetworks tend to be connected. For unsupervised learning, we are concerned with a multi-view learning task in which we compare the variance of high-dimensional biological features collected from multiple sources which are referred as “views”. We propose the sparse multi-view matrix factorisation (sMVMF) which is parsimonious in both model structure and model parameters. sMVMF can identify latent factors that regulate variability shared across all views and the variability which is characteristic to a specific view, respectively. For each novel method, we also present simulation studies and an application on real biological data to illustrate variable selection and model interpretability perspectives.Open Acces

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Recent Advances in Social Data and Artificial Intelligence 2019

    Get PDF
    The importance and usefulness of subjects and topics involving social data and artificial intelligence are becoming widely recognized. This book contains invited review, expository, and original research articles dealing with, and presenting state-of-the-art accounts pf, the recent advances in the subjects of social data and artificial intelligence, and potentially their links to Cyberspace
    corecore