4 research outputs found

    Fast Numerical and Machine Learning Algorithms for Spatial Audio Reproduction

    Get PDF
    Audio reproduction technologies have underwent several revolutions from a purely mechanical, to electromagnetic, and into a digital process. These changes have resulted in steady improvements in the objective qualities of sound capture/playback on increasingly portable devices. However, most mobile playback devices remove important spatial-directional components of externalized sound which are natural to the subjective experience of human hearing. Fortunately, the missing spatial-directional parts can be integrated back into audio through a combination of computational methods and physical knowledge of how sound scatters off of the listener's anthropometry in the sound-field. The former employs signal processing techniques for rendering the sound-field. The latter employs approximations of the sound-field through the measurement of so-called Head-Related Impulse Responses/Transfer Functions (HRIRs/HRTFs). This dissertation develops several numerical and machine learning algorithms for accelerating and personalizing spatial audio reproduction in light of available mobile computing power. First, spatial audio synthesis between a sound-source and sound-field requires fast convolution algorithms between the audio-stream and the HRIRs. We introduce a novel sparse decomposition algorithm for HRIRs based on non-negative matrix factorization that allows for faster time-domain convolution than frequency-domain fast-Fourier-transform variants. Second, the full sound-field over the spherical coordinate domain must be efficiently approximated from a finite collection of HRTFs. We develop a joint spatial-frequency covariance model for Gaussian process regression (GPR) and sparse-GPR methods that supports the fast interpolation and data fusion of HRTFs across multiple data-sets. Third, the direct measurement of HRTFs requires specialized equipment that is unsuited for widespread acquisition. We ``bootstrap'' the human ability to localize sound in listening tests with Gaussian process active-learning techniques over graphical user interfaces that allows the listener to infer his/her own HRTFs. Experiments are conducted on publicly available HRTF datasets and human listeners

    Blind source separation using statistical nonnegative matrix factorization

    Get PDF
    PhD ThesisBlind Source Separation (BSS) attempts to automatically extract and track a signal of interest in real world scenarios with other signals present. BSS addresses the problem of recovering the original signals from an observed mixture without relying on training knowledge. This research studied three novel approaches for solving the BSS problem based on the extensions of non-negative matrix factorization model and the sparsity regularization methods. 1) A framework of amalgamating pruning and Bayesian regularized cluster nonnegative tensor factorization with Itakura-Saito divergence for separating sources mixed in a stereo channel format: The sparse regularization term was adaptively tuned using a hierarchical Bayesian approach to yield the desired sparse decomposition. The modified Gaussian prior was formulated to express the correlation between different basis vectors. This algorithm automatically detected the optimal number of latent components of the individual source. 2) Factorization for single-channel BSS which decomposes an information-bearing matrix into complex of factor matrices that represent the spectral dictionary and temporal codes: A variational Bayesian approach was developed for computing the sparsity parameters for optimizing the matrix factorization. This approach combined the advantages of both complex matrix factorization (CMF) and variational -sparse analysis. BLIND SOURCE SEPARATION USING STATISTICAL NONNEGATIVE MATRIX FACTORIZATION ii 3) An imitated-stereo mixture model developed by weighting and time-shifting the original single-channel mixture where source signals can be modelled by the AR processes. The proposed mixing mixture is analogous to a stereo signal created by two microphones with one being real and another virtual. The imitated-stereo mixture employed the nonnegative tensor factorization for separating the observed mixture. The separability analysis of the imitated-stereo mixture was derived using Wiener masking. All algorithms were tested with real audio signals. Performance of source separation was assessed by measuring the distortion between original source and the estimated one according to the signal-to-distortion (SDR) ratio. The experimental results demonstrate that the proposed uninformed audio separation algorithms have surpassed among the conventional BSS methods; i.e. IS-cNTF, SNMF and CMF methods, with average SDR improvement in the ranges from 2.6dB to 6.4dB per source.Payap Universit

    Characterizing neural mechanisms of attention-driven speech processing

    Get PDF
    corecore